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ABSTRACT
“r
Multi-Step Reactions of Particles on Nuclei
at High Energy
Gregor v. Bochmann Ph D Thesis
Department of Physics McGill University
A coupled channel optical model is used to investigate
the importance of multiple production steps for coherent and in-
coherent reactions on nuclei. Analytic expressions for the
cross section are given in the low and infinite energy limit.
Detailed calculations are done for a coupled m-Aj-Aj
system. For photo-reactions on nuclei, calculations are pre-
’ . sented within the framework of vector dominance, and are compared

with experiments of inccherent ° and ﬂ* photo-production and
photon-nucleus total cross sections. The question of the
validity of vector dominance is discussed. The total neutron
cross section on nuclei is calculated and compared with experiment.
The possible contribution of intermédiate N* states to the elastic
scattering amplitude is also discussed.

The effects of correlations in the nuclear wave functions
on elastic and inelastic scattering at high energy are described.
It is indicated how these results can be used o calculate coherent

and incoherent production processes.
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1. INTRODUCTION

High energy reactions on nuclei are interesting for
several reasons. On the one hand, we can get information about
the nuclear structure; for example, we can determine the proton
or neutron distribution in the nucleus, or study the nature of
nuclear correlations. On the other hand, we can get information
about the interaction properties of the particles that react with
the nucleus. In this connection there are two characteristics

that distinguish reactions on nuclei from reactions on nucleons.

These are the following:

(a) The nuclear coherence, which produces a forward peak
in the differential cross section of any diffractive
reaction ;hus enhancing the cross section appreciably;

(b) Processes with several reaction steps on different

nucleons inside the same nucleus.

The point (b) has been used to determine the total cross section
of resonances on nucleons by observing reactions where the resonance
is produced on one nucleon and scattered or absorbed on another
nucleon inside the same nucleus. At high energy, even a very
short-lived resonance like the p°® meson has a mean free path which
is large compared to the nuclear radius.

When we speak of multi-step reactions in this work, we

mean reactions with several production steps which could be either



transitions between different resonance channels, such as between
pion, 2j, and A3 mesons, or the production of a resonance which
transforms back to the original particle in a second production
step. The presence of elastic scattering and absorption is
always assumed implicitly. Most theoretical work for reactions

on nuclei has been done for the cases of scattering or one-step

production by using an optical model (1) or the Glauber multiple

(1)

scattering formalism . However, two-step contributions to

the reaction amplitude have been found to be important for the photon-
(2)

and some other reactions.

(3)

nucleus total cross section

We have developed a general formalism that allows for

any number of production and transition steps between several channels.
This multi-channel optical model for coherent processes is presented
in chapter 2, together with a description for incoherent production
reaétions. In chapter 3 we point out how the parameters of the
model can be determined from experiment, and we discuss the uncertain-
ties that are involved. We have written a computer programme to

be used for numerical evaluation of the multi-channel optical model.

In chapter 4 we present calculations (3) for coherent and incoherent

Ay and Ag meson production by pions on nuclei, a comparison between

(4, 5)

experiments and theoretical calculations for photo~reactions on

nuclei, and a discussion (6) of the importance of two~step contri-

butions by intermediate N* states to the neutron- mucleus total cross

section. Finally, in chapter 5, we discuss the effect of nuclear
(7)

correlations on high energy cross sections
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2. THEORY OF MULTI-STEP REACTIONS

2.1 The optical model for high energy reactions on nuclei.

We consider high energy reactions of an incident particle
on a nucleus. The outgoing channel, except for the nucleus, is
either identical to the inéident particle (scattering) or is a
different particle or resonance (production reaction). We represent
the incident and outgoing channels by their respective quantum numbers. We
éxpect - a diffractive two-body reaction if the spin-parity quantum

numbers of the incident and outgoing channels satisfy the Gribov-

Morrison relation (8)
' S -8
_ in out
Pout = Fin
and the other quantum numbers remain unchanged. In this case the

differential cross section for the reaction on a nucleus shows a
forward peak due to the coherence of ‘the amplitudes originating from

different nucleons inside the nucleus. Experimentally, nuclear

(9)

coherence at high energy has been observed for elastic scattering ’

(10) (11, 12)

vector meson photo-production ; Aj-meson production by pions

(13)

K° regeneration ;, and some other reactions.

Glauber (1) has proposed a model to describe high energy
scattering on nuclei which is based on the assumption that the phase
shift for scattering of a particle on a nucleus is just the sum of the

phase shifts for the reactions of the particle with each of the
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individual nucleons inside the target nucleus. At high energy,
the Fermi motion of the nucleons in the target is small with respect
to the incident momentum, so that during the passage of the projectile
we can take the nucleons as being fixed in their positions; and the
observed amplitude is an average over the positions of the nucleons
in the nucleus, Glauber has shown (1) that this multiple scattering
model‘is equivalent to an optical model description with an optical
potential that is determined by the nucleon density distribution and
the two-body amplitudes. The differential equation of the optical
model is solved by an eikonal method, which assumes straight line
trajectories for the high energy particles passing through the nucleus.
Both the Glauber multiple scattering model and the optical
model have been used to describe high energy scattering on nuclei (9),
and have been generalized in order to describe coherent and incoherent
particle production (14, 15). The multi-éhannel optical model
formalism presented here lies in the same line of development and is

new in that it allows for any number of ccherent production steps

for a given reaction.

2.2 The multi-channel optical model.

We present here a multi-channel optical model of high

energy reactions on nuclei (3) which is suited to describe the follow-

ing phenomena:

(a) several production channels coupled coherently to the

incident channel, and to one another;
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(b) contributions to the cross section by multi-step
processes (see fig.l):

(c) the effect of the longitudinal momentum transfer
at finite energies due to the mass differences of the
particles under consideration;

(d) inccherent reactions involving one incoherent step

and possibly further coherent steps.

We make the following approximations which are further discussed in
.éection 2.5;
(3a) We use the eikonal approximation which is good for
reactions at small angles and high energy.
(B) If not stated otherwise, we neglect the effects of
spin and isospin on the amplitudes assuming that the
spin and isospin non-flip amplitude; dominate.
(C) We use a product wave function UI ;o describe the
nuclear ground state |I>' and define the single

particle density function p(r) for a nucleon in a

nucleus of mass number A by

| u

T (r1, ssey ¥

2 _ A
A M2 =TT etz | (2.1)

i=1
. . .th
where ri is the coordinate of the i nucleon.
The effect of nuclear correlations can be incorporated

into the optical model by a method described in section

5.5.



(D) We make a large A approximation which is well

satisfied for medium and heavy nuclei.

In the following we first write down an optical model
formalism that describes coherent reactions including several dif-
fractive production channels and multiple step contributions as
represented by the diagrams of fig. 1. This includes, in parti-
cular, the effect of the intermediate. states .on the elastic scattering

(2, 6, 16) and the effect of coupling between two dif-

cross section
fractively produced states on their respective cross section (3).

The effect of damping inside the nucleus is always included in our
calculation by the presence of the imaginary pa?ﬁ of the elastic
two-body scattering amplitude.

We consider several channels & (ingoing and outgoing ones)
which are described by the wave functions wa(r). We suppose that
we know all two-body amplitudes fa‘a' (ka') which are the amplitudes for
producing channel o' in a reaction of the incident channel & with a
single nucleon. The quantity ka’ is the momentum of the outgoing
channel. -“For o= a', faa(ka) is the elastic scattering ampli-
tude of the channel o from a nucleonj

The reaction of these channels with the nucleus and with
one aqother is described by an optical model (17). The coherent

production and scattering of the channel o inside the nucleus is

described by the wave equation

(2.2)

(v*+p v =Y u, ) v,
!
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which is a coupled differential equation of optical model form.
The quantity p, = E2 - mg is the magnitude of the three-
momentum in the lab frame of the channel o with mass m, o, where
E is the total energy of the incident particle.
The optical potentials in the above equation are of two

kinds:

(i) Uau(r) which gives rise to elastic scattering and

damping for the channel o ;
(ii) Uaa'(r) with o # o' which gives rise to production of

channel &' by the presence of channel o .

These potentials are proportional to the corresponding two-body
amplitudes faa' . Taking into account the range of the two-body

interaction, the optical potentials Uaa'(r) are given by

. 2
U (r)=-2ip A fc) b r(L’)l) r::x’(l’ -1 (2.3)
where the two-body profile functions raa'(b) are defined by

k-b

[ (b )" ‘(al"k ﬁ(x' (h)e (2.4)

oL i/

Here, and in the following, r is a three-dimensional space vector,

z is its component parallel to the beam of incident particles, and



b its two-dimensional component perpendicular to the beam. Since
we consider reactions at high energy, we can sometimes neglect the
difference between P, and Py and simply write the factor p instead,'
as we have aong in equations 2.3 and 2.4.

- We sometimes neglect the range of the two-body interaction,
given by raa'(b)’ compared to the extension of the nuclear matteg;
that is, we.assume p(b', z) to be constant within the range of

integration in eéuation 2.3. In this case the potentials Uaa'(r)

are given by

U

X

(r) ="(‘fo“'(0) A [7(")' (2.5)

This approximation is fﬁrther discussed in section 2.5.3.

2.3 The solution of the ‘optical model equation.

To solve equation 2.2 we use the eikonal approximation(l' 18);

that is, we assune that the distances that characterize the potentials
Uaa'(r) are large compared to the particle wave length. This is

fulfilled at high energy. We introduce the functions qz(r) by

()= e T g ) 2.

Substituting this into equation 2.2, yields



ﬂk)

eLT“z(Vzc&(r) +1ip ,(% cﬂ((r))= 2 W, )
D(I

The functions qz(r) are slowly varying compared to the oscilla-
ip 2z '

tions of the factor e o , since at high energies the right

hand side of equation 2.2 is small compared to the term piwa(r).

We can, therefore, neglect the term V20 (r) compared to
4 g o.

2ip 2 '(r) in the equation above and obtain the one-dimensional
a 9z lo

differential equation

9};_ (ﬁ( ("‘)-‘—Z:P Z eL(T«'“?« )z ux,o((r) (ﬁ(, (r) . (2.7
% !

The boundary condition for this equation is determined by the

following remark: Before the reaétion takes place, that is for

small enough z (z = - »), only the incident channel o, is present.

Thus, we have the boundary condition

«};(r)ze“’“‘- SW

or ‘ for z = - o« (2.8)

G lr) = goc- x

n

Using a Greens function method (18), the amplitude £ (k)

for scattering a particle in an optical potential U(r) is found

to be
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fy=-75 (#r ™ UE )
where w(r) is the wave function of the particle. Extending
.this result, We find that the coherent amplitude Fa. &(ka ) for
producing (of scattering) the channel o off the.nuclzﬁs by the

incident channel e is given b&

'

E(;,o( (kd)'—'— L?‘-]-_ fdﬁr e‘i e Z u . (r) /lnl (r) - (2.9)

We use the fact that in forward direction we can approximate
' -ikar - -iq&b -ip =z
the factor e by e e where q, is the
perpendicular component of the momentum transfer ka - ku .
: in

Then with equations 2.6 and 2.7 we get

. | o
F"-(h.K (k“)=_ﬁ.'; yolzbe'b‘]x-b fdz 2.»?% Lf;“(r-)

which yields
i ~i “-L- _ (2.10)
E:..vc (k) = -Z:T;L jdlb e [CF"‘ by e) 3 :n“]

Once we know the functions qZ(r) by solving equation 2.7 we

thegefore can easily get the coherent amplitude Fa a(ku)
in
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for production (or scattering) by integrating equation 2.10.

Using the spherical symmetry of the nucleus, we get

Fox (k) =-ip (B4B J,(19,0-8)
"[cfx(B’+w) - gd;..m]

(2.11)

where

| | o -iex cos A
I, =55 (e 42

0
is the Bessel function of order zero, and B = |b| is the

magnitude of the impacf parameter b.
The coherent cross section for production (or scattering) is

given by , .
(¢) (c)

c_(v;;-“ ___Lz a‘v-o?:..u _“_-

dQ T T 4t BLRES

Z

LR , (2.12)
n

We have considered two methods for solving the

differential equation 2.7:

(a) An analytical method for a square-well nuclear
density distribution,

(b) Numerical integration.

For a square-well density distribution, the function p(x)
is a non-zexo constant for |r| smaller than the nuclear radius R,
and zero for |r|$R, and because of equation 2.5 the same holds for

u(r). From equations2.7 and 2.6 we get in the region inside the
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nucleus

> ‘ u'd'd(r)
5z hl2)=2 b{?" a - 27, fag )

:Z ¢ Mc“(l /L';, (L’.)z)

S Uay

—

<! 2 Pu

with a constant matrix =
Ma(o(' Tf‘

whose off-diagonal elements are comparatively small.

A solution is

eL (2-2.) M )0(0(/

4{:((6)1)-'-’-( "K(,U’;Zo}

Using equation 2.6 and knowing that

(PK(B)'OO) :(Px(B)~23')=8;wand (&(B)DO‘) = (&(BJ 23)

where zy = \/ R2 - B2 corresponds to the edge of the nucleus,

we get

¢ (B,m) = AC g Rl (ezz” i

o oKy,
2 zB M
The term e can be evaluated in a new system of mixed channels
that diagonalizes the matrix M. We have not exploited this method

for evaluating the functions Lﬁx (B, + » ) because the square-well

density distribution for the nucleus is not a good enough approximation.
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To obtain the results discussed in chapter 4, we
have written. a computer programme which solves equation 2.7

numerically and then integiates equation 2.11.

2.4 < Incohererit Processes

Incoherent processes are reactions that leave the
nucleus in an excited state. Using the closure approximation
which is explained in some detail in section 5.4, one gets an
expression for the incoherent cross section which is the summed
cross section for all possible exéited final states of the nucleus.
An incoherent procesé can be seen as taking place on a single
nucleon inside the nucléus. Several incoherent steps(ls’ 19),
as shown in fig. 4, are possible for a given reaction. We
present hefe a model which, for a given reaction, includes one
incoherent step preceded‘and followed by coherent production steps
and elastic scattering.

| The nuclear excitation excludes coherence between ampli-
tudes that originate from incoherent interactions at different
places inside the nucleus. On the other hand, there can be inter-
ference of different amplitudes that have the incoherent step at
the same place. This concept was proposed by Gottfried and
Yennie (17) for incoherent photo-production processes. In the

case of p° photo-production, there is an interference between

the two amplitudes represented by the diagrams of fig. 2a (one-step
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incoherent production) and fig. 2b (coherent p° production
followed by incoherent scattering) as long as the incoherent
processes take place on the same nucleon. We generalize this
concept (3) and assume interference between all multi-step
amplitudes that have the incoherent process on the same nucleon.
The two-step contribétions are ¥epresented in fig.3. In the’
case of incoherent production of a diffractive channel, like p° .
photo-production or Al megon production by pions, thg multi-step
contributions are relatively large and, by destructive interference
with the oné-step process, produce an appreqiable decrease of the
incoherent cross section.

In orxder to formulatevour model, we introduce the

functions wa (b, z, LN ao) which are eikonal solutions to the

wave equation 2.2 with the boundary condition

%(5)2)201“°)=S«xo for 2= 20 .
They represent a kind of transfer matrix. Now the incoherent

cross section for producing the channel o by the incoming channel ) ;

@, on the nucleus is given by
@3
cl U—-- ol

in

= - fclsl" Idzku (r) (2.13)

where Ia a(r) is the contribution that is due to reactions
in
with the incoherent step taking place at the point r. I 0‘(1:')

o,
in
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is proportional to the nuclear density p(r) at the point r and
is given by the interference of all possible multi-step ampli~-
tudes whose incoherent step takes place at the point r; There-

fore we have

I,(_ ,((l") z)= A f(l’)*)

A | 2
x,Z,:',nt’ (b, z)'—w}tx;,‘) fx.“,,(q) (ACES z}x')
u)x’

where the function wa' (b, z, ==, ain ) is the wave function of the

'channel o' at the point r = (b, z) produced coherently by the incident

channel LI The factor fa'a" (q)'describes the incoherent pro-
duction (scattering) of the channel a" by the channel a', and the
function wa (b, +», z, d“ ) describes the production (scattering)
of the channel d after the incoherent process.

We nbte that it follows from parity and time reversal in-
variance of the interaction together with the spherical symmetry of

the nucleus, that
1*’,,((.5)'2)"20)“0): "‘Kx’(l’) 2o ) x,00) .

Therefore we can write

ID('-MK (L)E) = A f(l’)t)

(2.14)

. ‘ 2
", ,Z' Yo (b)2,-2,x,) fo{'o(" (9) Hew (b-2,-20, x))
oLy "

We have evaluated the inccherent cross section numerically by means

of equations 2.13 and 2.14. The functions wa' (b, z, =-»,a) are
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obtained in the same way as the wave functions wa(r) from the
solution of equations 2.7 and 2.6.

It is to be noted that the channels o' and a" in
equation 2.14 are intermediate channels. The channels o'
that appear in the summation are diffractively connected to the
incoming channel o, whereas the channels o" are connected to
the outgoing channel o . There.are two possible cases:

(a) in- and.outgoing channels are diffractively conneﬁfed
(example: incocherent p° photo-production). Then the
channels o' and o" pelong to éhe same set of
diffractive channels.

(b) in- and outgoing channels are not diffractively
connected (example: ﬂ* photo-production) . Then the

channels o' and o" belong to two different exclusive

sets of channels.

2.5 é@proximations and possible improvements.

In deriving the above formalism for multi-step reactions
on nuclei, we have made a number of assumptions. We mention
here the most important ones in order to show the limits within

which the present formalism can be applied without modification.

2.5.1. The eikonal aggroximation

The eikonal approximation (1, 18) which is used to arrive
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at equation 2.7 is characterized by the condition U(r)<<p%, which
is easily satisfied at high energies, and by the condition
q2<<pv% , which is satisfied near the forward direction. The
eikonal solution of the optical model is equivalent to the Glauber

(1)

multiple scattering description .

2.5.2. Spin and Isospin

We assume that all amplitudes are spin and isospin

(10, 20)

independent. There is experimental evidence that this

is fairly well satisfied for diffractive reactions.

2.5.3. The two-body interaction range

The range of the two-body interaction, which is represented
by the two~body profile function [ (b) of equation 2.4, enters the
calculation for coherent reactions in equation 2.3. The effect of
the range on incoherent reactions is described by C.L. Tang in
reference (21). Since the interaction range is small compared to
the nuclear radius, this'effect is small and can be taken into account
by using an effective naclear density function, like the one defined
by equation 5.8. As long as the nuclear density distribution is

not well known, these questions are more or less academic in nature.

2.5.4. Nuclear Correlations

In the model described above we have ignored the nuclear
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correlations by assuming for the nucleus the product density dis-
tribution given by equation 2.1. The effects of nuclear cor~
relations on the cross sections afe described in chapter 5. Here,
we mention that for coherent reactions, the correlations give rise
to an effective increase by a few per cent of all the two-body
amplitudes involved. For incoherent reactions there is, in
addition, some t-dependent correlation contribution to the cross
section which produces a forward dip in the inccherent cross section.
For diffractive reactions, however, this dip is haxdly seen because

of the large forward coherent peak.

2.5.5. Multiple incocherent steps

In the model descriibed above, we include any number of
coherent steps, but only one inccherent step (incocherent production
or incoherent scattering). The contribution of multiple incoherent
steps to the incoherent cross section in the forward direction is
usually of the order of 10%. In the case of ﬂ+ photo-production,
discussed in section 4.2.4, we have evaluated the incoherent two-

step contribution. More details for the case of scattering are

given in references (15) and (19).

2.5.6. 1/A corrections

The correspondence between the optical model description

and the Glauber multiple scattering expansion (1) holds only if one

ignores terms of the order of 1/A, which means it holds for heavy
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nuclei. The terms of the order 1/A are evaluated in chapter 5

for the case of. elastic scattering (see equations 5.17 and 5.33).

(55, 57) of the

On the other hand, the center of mass constraint
nucleus givesrise to corrections too, which are proportional to 1/a,

and can usually be neglected.

2.6 Some cases where multi-step processes are important.

Since the fwo-body production amplitudes at high energies
are much smaller -~ By a factor of 0.3 for a relatively strong dif-
fractive proauction reaction - than the elastic amplitudeé, which
give rise to damping, the contribution of multi-step processes to
thé cross section is, in most cases, comparatively small if not
negligible. However, there are reactions where the contributions
to the cross section from one- and two-step processes are of the

sare oxrder of magnitude. These are the following:

2.6.1. Photo-reactions (see section 4.2)

» The vector meson dominance (VMD) model assumes that the
photo-production of the final channel goes via a virtual vector
meson p°9, w; or o . This is a one-step process. If the reaction
takes place on a nucleus, there can be real production of a vector
meson with subsequent production of the final channel, which is a
two-step process. The VMD model implies that one- and two-step

processes are of similar strength.
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2.6.2, Incoherent production of a diffractive channel

(see sectiqn 4,1.2)

In this case, the one- and two-step processes of
fig. 3a, b, and ¢ are comparable in strength because the additional

step is a scattering step which has a strong two-body amplitude.

2.6.3. Reactions where the one-step process is

Eglativelz small

In this case, multi-step processes may be important or
even dominating. We note the following examples:
(i) double charge exchange reactions(zz)

(ii) production of diffractive channels with

higher mass (see section 4.1.1).

ey
‘

2.7 Infinite and low energy limits.

2.7.1. Coherent production

The energy dependence of the coherent production cross

(14, 15), ignoring the variation of the two-body

section on nuclei
amplitude, is determined by the longitudinal momentum transfer

= (me - m2 - .
Ap (mout me Y / 2p . In the low energy limit, that is when
ApoR >>1 with R being the nuclear radius, the momentum difference
between in- and outgoing waves destroys the equal phase relation:

there is no coherent production.

M
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In the infinite energy limit, when Ap+R<<l , the effect
of longitudinal momentum transfer can be neglected. We have
maximum cocherent production. If we consider ocne-step production
Processes only, and assume pure imaginary elastic amplitudes, we
can use the result obtained by K.S. Kolbig and B. Margolis in ref. (15).
For producing the channel oy by the incident channel oj on a nucleus,

they find the forward coherent production amplitude '

R @ =1, NE=,F) &

with the effective number N(o;, 07) defined by :

NG )= e (2877 T 2T o
1™ Y
and

T)=A fcl!: f(b)z) i | (2.17)

Thé quantities o3 and o0y are the total cross sections on a
nucleon for the channels a; and aj. For equal total cross

sections o©0; = 05 this leads to

]:;.dl(o) = fa.a._(o) N, (9{—) (2-158)

where N; (o) is defined by equation 2.21.
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2.7.2. Incoherent production

The incoherent production cross section in the low
energy limit contains no contribution from diagrams of the kind of
fig. 3b to 3e, because the coherent production steps are inhibited
by longitudinal momentum considerations. Ignoring multiple in-
coherent steps, we quote the result ‘for one-step incoherent pro-
duction obtained by K.S. Kolbig and B. Margolis in ref. (15). The

incoherent production cross section can be written in the form

(1)

S ) = [ @ Ny a0

with I\.Ieff = N(O‘l, 0'2).

We note that for o; = g we have

(2.19) !
= LU
Neﬁ‘ N'( ') : :l
where N7 (0) is defined by equation 2.21.

In the infinite energy limit the situation is more
complicated. . Coherent production steps, followed or preceded

by incoherent steps (fig. 3b through 3e) -'can contribute to the

incoherent cross section. We refer to the sections 4.1.2,

4.2.3, and 4.2.4 as examples.

We have derived a formula for the infinite energy limit

of the cross section for incoherent production of a diffractive
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channel. In this case the diagrams of fig. 3b and c make an

appreciable contribution to the cross section. If the total cross

sections 03 and 0y are equal (0;=0,5 = 0), we have

(2.20)

N

e

€= N, (v) =2 N (7) + % Ny (o)

where the effective numbers Nﬁ# o) are defined by

- T (b
NM(V')=$ %r fa‘zb (v—T(b))m e *) (2.21)

It is interesting to note that we can derive this result both from
the optical model presented above, and from the multiple scattering

formalism (15). The multi-step coritributions corresponding to

the diagrams of fig. 3b and c¢ are contained in what the authors of

reference (15) call the semi~coherent cross section.
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3. UNCERTAINTY OF THE NUCLEAR SHAPE AND
THE TWO-BODY AMPLITUDES .

3.1 Nuclear parameters.

For calculations of high energy cross sections on nuclei
it is important to know the density distribution of the nucleons
inside the target nucleus. In this work we are mostly interested
in reactions on medium and heavy nuclei. We describe the nuclear
state by a product wave function with an average density distribution
p(r) defined in equation 2.1, and which represents the average over
all individual nucleon wave functions and ignores the correlations
between nucleons. We show in chapter 5 how the effect of nuclear
correlations on the cross sections can be evaluated.

There are a numbe; of methods to determine the nuclear
density distributions. We mention here the following:

(a) electron scattering experiments,

(b) mesonic atoms,

{c) high energy reactions on nuclei.
In order to get a consistent picture between different methods of
measurement, one usually assumes a certain parameterization of the
density distribution p(r). Throughout this work, all numerical

calculations have been done with the Wood-Saxon density function (23)

P(¥) =g, {\ s TR .1
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we often ignore the effect of nuclear correlations and of the two-
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with a normalization constant o -
We have the following two free parameters:
(i) the radius R, |
(ii) the parameter ¢ for the surface thickness.

We have usually taken the value ¢ = 0.545 fm from electron

(24)

scattering experiments For the parameter R, we make use

of its A dependence in the form

1/3
R=R A (3.2)
o

where the wvalue of Rb is determined from experiments.

In theoretical calculations of cross sections on nuclei,

body interaction range. For a comparison with ekperiments we
therefore should use an effective density distribution where these
effects are "folded in", as is done in equation 2.3 or 5.8 and 5.35.
On the other hand, one can analyse the experimental data, ignoring
the interaction réngg and correlations, in order to get the effective
nuclear density distribution directly. Such a determination of the
radius R is done from the data of coherent p° photo-production (25)

and yields the values of R listed in Table 1. The average,over.all

measured nuclei, yields R.o = (1.12 % 0.02) f£m.

3.2 The two-body interaction amplitudes.

There are two kinds of two-body amplitudes that enter
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our calculations:

(a) ' amplitudes that, in principle, can be directly
measured by two-body reaction experiments, such as
£ (YN = p°N),or £(pN - mN) which is determined from
the time reversed reaction TN - pN.

(b) amplitudes that cannot be directly measured because
both, incoming and outgoing channels, are resonances.
Such are the amplitudes for elastic scattering of
resonances, like pN -+ pN, or for a p;oduction like

A; N+ Az N.

The amplitudes of the kind (b) can, in principle, be determined
from reactions on nuclei, as has been done for the imaginary part
of the elastic scattering amplitude — related to the total cross

section — of the resonances p°(765) (26, 27), $(1019) (28),

(12, 16) and the Q enhancement Q (1300) (29). On the

A; (lo70)
other hand, theoretical models for strong interactions may often
give estimatgs for the amplitudes of the kind (b).

There are often additional uncertainties in the two-body

interactions. We mention the following ones:

R f@) ¢ the amplitude £(q),

(a) the phase B = Im £(q)

(b) the importance of spin flip amplitudes,

(c) the isospin decomposition.

However, in many cases these uncertainties can be resolved.
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3.3 The definition of a closed system of channels.

In the description of multi-step reactions on nuclei,
as given in equation 2.2, we have a system of channels o that are
coupled to one another through the two-body amplitudes faa'(q)'
Besides the incoming and outgoing ones, there are channels that
play the role of intermediate real states during the interaction
with the nucleus. Then the following question arises: How many
intermediate channels o do we have to include in the calculation in
order to get a realisfic answer for the cross section? In principle,
all diffractively coupled channels can contribute. There are many
reactions, however, where the contribution from intermediate channels
is very small (3). In practice, uncertainties about the amplitudes
and the complexity of the calculations limit the number of channels

to be included in the model.

v

There is another.interesting question, which is discussed
in section 4.3: Do only diffractive resonances of the two-body
interaction contribute to the multi-step reactions in the form of
intermediate states, or does some "diffractive background" of the

mass spectrum contribute as well?

Bt ai bet A ettt kb e
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4. APPLICATIONS TO PARTICULAR REACTIONS

4.1 The w~A1-A3z system

We consider the production of the mesons A; (1070) and
Az (1640) on nuclei by incident pions. The mesons probably have

(30)

spin and parity l+ and 2" respectively and are therefore ex-

pected to be produced diffractively on nucleons. The Aj has

(12, 31). We assume

been seen to be produced coherently on nuclei
for present purposes that the w, A; and Az form a closed system
with reference to equation 2.2, i.e. that couplingsto other mesons é

are negligible.

4.1.1. ' Coherent production

One can expand the amplitude leot2 on the nucleus in terms
of multi-step amplitudes Féizz where i indicates the nunber of pro-
duction steps involved. Figure 1 shows diagrams that represent
one-, two-, and three-step amplitudes. If the coupling between the
channels is not too strong, the contribution of three or more steps
is negligible. It is to be noted that the elastic scattering is

not counted as a step.

A._ The infinite energy limit

We now look at the high energy limit where the longitudinal

momentum transfer can be neglected. If we assume that the elastic
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{ scattering amplitude is the same for all channels, and if we use
equations 2.7 and 2.10, we find the following expressions for the

forward amplitude

Foa (=1 (@) N ()

(4.1)

E(f:) (0) = - fo(,o(’ (0) fo('(xbw) N !
% fa('o(' (0) 2.(2.. )

with the effective numbers Nm(o) defined by equation 2.21. The

quantity c& is related to the total two-body cross section Ua of

Re fa (o)
the channel a and to the phase B = — 2 by
Im faa(o)
( - ! _ . _ L.Ljrfamlo) )
. G‘;(_U;(|~'1.P)— - (4.2)

Values for Nj;(0) and Np(c) are given in fig. 5 for the case of
pure imaginary amplitudes.

The forward amplitude for A; production then is given by

: © fi )
Falo)= Fea, (0 { N, (=)~ ?f(o) ?M'(D) No () (o
TA, AzAy

where we have neglected higher than two-step contributions.

Similarly we have for Ag production

¥ = 0 _g—_' - fTA.(o) fA.As(o) _‘Z'_'
WAJ(O) ans( ){N| ( z ) fvrA3(°) fA'Al(O) NL( z ) (4.4)

-
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(30)

Experimentally it is found that f“Aéo) / fﬂAl(o)= 0.35

and fﬂAl(o) / fﬂﬂ(o)= 0.27 at 8 Gev/c incident pion momentum.

We must also know (fAlAs/ fAlAl) and (fAlAg/fA3A3) in order to

have a definite answer. It is reasonable to expect that these

ratios will be of the same order of magnitude as (fﬂAl/ fnn ) .

If (f = (fwAl/fﬂw ), the one-step process in equation

A1A3/ fA3A3)

" 4.3, corresponding to the first term on the right hand side, is

dominant for A; production, whereas for Az production both terms
can be important.

It is to be noted that at finite energies the two-step
process for A} production through the A3 is further inhibited by

longitudinal momentum transfer effects due to the higher mass of

the A3 . The'éame would'be true for possible couplings to other
high mass bosons. It is unlikely that there is any important
(12, 31)

coherent coupling to mass states lower than the 2;

We have a strong indication then that one can, to good

approximation, calculate A; production as a one-step process.

In A3 production we are in a more complicated situation.
The fact that the one-step and two-step processes are comparable
means that in detailed calculations we must know, or be able to
determine from the production experiments, (f /£ Yas well as

. A1A3" AjA;

ctot(AlN) and Gtot(AgN). I@ principle we should be able to deter-
mine all of these from reactions on nuclei since we have the whole
periodic table to work with as targets. There is, however, the

real possibility that other bosons contribute as intermediate states.
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B. Coherent production at finite energies.

At finite energies we do not have simple expressions
like equafions 4.3 and 4.4 to work with. We have solved the
problem numerically as described in chapter 2. - Some results
for the coherent production differential cross sections on Copper
are shown in figs. 6 and 7. In these calculations all two-body
amplitudes are taken to be pure imaginary. We have taken the Ag-
nucleon total cross section equal to the pion-nucleon total cross
section, Gn = 26 mbf The Aj-nucleon total cross section GA

(12) (16)

‘ 1l
has been taken equa} to Gﬂ‘ or to /3 0_'r The A4

production cross section is given for different values of the

parameter

X = fea, (0 fA'As(O) | (4.5)
fra, (0) fA.Aq(o)

which determines the relative strength of the one-step and two~-
step processes. For positive values of X these two processes
interfere destructively (fig. 7a and 7b). However, negative
values of X (fig._7c) would occur if the production amplitude
fwA3(°) has opposite phase to fﬂAi(o), which may be reasonable if
one assumes that the Az production on a nucleon proceeds via two
pomeron exchange. (Multi-pomeroﬁ exchange has been discussed by
Frautschi and Margolis (32) and by Jacob and Pokorski (32).

Table 2 lists some coherent cross sections for A; and Aj

production on different nuclei and at different energies. It is
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to be noted that for the values of X considered here, A; production
differs very little from the value obtained with X = 0 (no coupling
of A; to A3z ). On the other hand, A3 production is very sensitive
to the value of X. For X ~-1 and at energies around 15 Gev the
cross section on nuclei divided by the corresponding two-body pro-
duction cross section is about equal for Az and A; production.

The two-body cross section is, however, about 10 times weaker for

Aq produbtion than for A; production. For X = 1, A3 production

on the nucleus is very weak in the model studied here.

4.1.2 Incoherent production

We now discuss the calculation of incoherent production of
A; and A3 mesons using equations 2.13 and 2.14. It is to be noted
(see section 2.5.4.)that this method is not expected to yield a very
accurate incoherent production cross section at the smallest values
of momentum transfer. However, at very small valueg of t, coﬁerent

production is dominant.

We write the incoherent cross section for the production of

particle o by incident pions as

doz@

).
o(__é- = H:ra( (t)r_ Neff -9

where Neff is an effective nucleon number for the nucleus under

consideration. For Aj production at low energies we use only

the term o' = pion and o" = o in the sum on the right side of
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equation 2.14, which corresponds to one=-step production of o by
pions. In agreement with equation 2.18 we find Neff = N(o“ ,oAl),
the latter being defined by equation 2.16. Keeping all terms of
the sum in equation 2.14 includes the following processes, which

contribute to the production of the state o , and which are repre-

sented in fig.3:
fig. 3a : one=-step production

fig. 3b : coherent production of o followed by incoherent

scattering of o (texm o" = o' = o)

fig. 3c coherent production of « preceded by incoherent

scattering of the pion (term ao" = o' = pion)

fig. 3d and 3e: two-step production,‘one of which is

cocherent

in addition:processes with more than one coherent production

step.

Some values of Ne are given in Table 3 for different values of

£f
the parameters of the theory. The figures 6 and 7 show incoherent
as well as coherent production of Aj; and A3z and the sum of coherent
and incoherent cross sections for the parameters listed.

It is to be noted that the contribution of the multi-step
processes of fig. 3b through e disappears at lower energies due to
longitudinal momentum tr;psfer which inhibits the coherent production.

At high energies we have destructive interference between the one-step

(fig. 3a) and the multi-step processes. The contributions from the
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diagrams of fig. 3b and 3c are comparable in strengéh to the one-
step process because the additional step is elastic scattering

which has a strong amplitude. As a result, Neff decreases
appreciab;y for increasing energy. This is typical for the in-
coherent production of any diffractive channel. For A; production,
as far as the influence of an intermediate Ag state can be neglected,

Neff is given in the infinite energy limit by equation 2.20.

4,1.3 Discussion

It can be seen from the above that the simple one-step
theory which one is familiar with for coherent and incoherent diff
fractivé Production can be in serious error. In the case of a
relatively light and strongly produced boson like the Aj meson, the
one-step theory should be adequate for ccherent production, wherea§
for the Az meson it;is likely not. In incoherent production at
energies of the order of %0 Gev or greater, the simple one~step theory
needs corrections due to coherent production pPreceded or followed by
incoherent scattering. By going to lower energies this correction
may become negligible due to.longitudinal moméntum transfer considera-
tions. However, since the details of the coupling strength of one
ﬁnstable boson to another are unknown, it is difficult to evaluate
the corrections in detail. | To this end experiments on coherent
and incoherent production of pion (and kaon) resonances will be very
valuable. With enough data perhaps one will be able to sort out

coupling strengths as well as unstable particle cross sections.
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It is to be noted that, since the time when the above

(12)

calculations were completed, an experiment has been done that
seems to throw new light on the question of the nature of the A1(16).
Is it a resonance or some kinematical enhancement? This experiment
yields a very broad mass distribution for the 3w system produced
coherently by incident pions on nuclei. The total cross section of
the 37 system on a nucleon is of the order of 23 mb at 15 Gev incident
energy (see fig. 17) which is very similar to the value found for the
p° meson(zs) This is consistent with what one éxpecté for the A;

being a resonance (unstable particle) if one usequuark model calcu-
lations. According to the simple additive quark model (33) one
expects the total cross sections for the A; and p meson to be the

same as for the pion. The Az meson has not been seen to be pro-

duced on nuclei.

4.2 Photo-reactions and vector dominance

4.2.1. The vector dominance model for reacggggs on nuclei.

The vector meson dominance (VMD) model (34) describes the

strong interactions of photons in terms of the vector mesons p°(765),
w({784) and $(1019). It connects the hadronic electro-magnetic
current with the fields of the wvector mesons which have the same
quantum numbers as the electro-magnetic current, namely j =1,

P=-1, and C = -1. This connection can be made through the current
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field identity.

. &N my
x) = - L . (x) (4.8)
i v=f§,¢ 2o \é‘

where Y, are the coupling constants, mV the masses, and Vu(x)
the fields of the vector mesons V = p°, w, and & . The assumption
is made that the vector mesons p, & and ¢ completely saturate the
electro-magnetic current.

From equatidn 4.8 a relation between interaction ampli-

tudes can be obtained:

fxx (1) - \/%en 4 ) fw( (q) (4.9)
)¢ |

f;

where fya [fva ] is the reaction amplitude for an incident photon
[vector meson V] to produce the channel o on a nucleon. Ian is

the electromagnetic coupling constant ey = 1;7 s usually called a.
Figure 8b shows the éiagram that corresponds to equation 4.9. For
photon elastic scattering we use the diagram of fig. 8c which gives

rise to the identity

f?fx (‘7) = %:—_ %.q‘ (XV ) fVV (G]) | (4.10)

f)”/¢

where we have assumed that there is no coupling between the wvector

mesons, which means
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fvv' (7 Y=0 for V4 v/ (4.11)

Now we come to photon-induced reactions on nuclei.
The vector meson channels V = p°, w, and & are diffractively
connected to the incoming photon y , and are therefore produced
coherently. Coherent photo-production has been discussed else-

(14, 15). The concept of multi-step photb-reactions on

where
nuclei has been developed independently by several authors. Multi-
step contributions are important both for the elastic scattering of
photons on nuclei (fig. 9) which is related to the photon total cross

(2), and for incoherent photo-production (4, 17)

sections on nuclei
(fig. 10). In these two cases it turns out that, at high energf,
the one-step and two-~-step amplitudes are of the same order of magni-
tude. For lower energy, however, the coherent production of vector
mesons is suppressed by the longitudinal momentum transfer, and the
two-step amplitudes (figs. 9b and 10b) wvanish. The one-step ampli-
tude which remains is characterized by (i) a very long mean free
path of the photon through the nucleus due to the small value of the
photon-nucleon total cross section OY of the order of 0.12 mb, and
(ii) by the two-body reaction amplitude described by the VMD model.

At very high energy the interference of.one-step and two-
step amplitudes makes the photon behave like a mixture of vector
mesons. We have VMD on the nucleus as a whole, and consequently
the photon nucleon total cross section appears to be of the order of
25 mb. However, it is to be noted that measured photon cross sections

are much smaller due to the weak electromagnetic coupling constant Iem

of the photon;
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4.2,2, The determination of the two-body amplitudes.

The purpose of the following investigation is to test if
the VMD hypothesis together with the eikonal multi-channel formalism
can explain the experimental data that are available for photo-reactions
on nuclei. Therefore it is important to know the values of the
two-body amplitudes that enter the calculatipns. v In principle,
there are several methods for determining these; we come back to
this in the section 4.2.6. We describe here the method we have
adopted to get the two-body amplitudes used in the calculations of

sections 4.2.3 through 4.2.5.

A._ _p° photo-production.

The phase B = %ET%%%% " of the amplitude f?f for 9°

scattering on nucleons is determined through the quark model (33)

relation

f(foN_>?oN)=_‘i {f(w*rqw*?) +f(1r‘?—>'lr°? )} (4.12)

..

from the measured phase of the pion proton scattering amplitudes

There have also been direct measurements(36) of the phase B for p°

(35)

photo-production, which confirm the values wé have used. It is

to be noted that if one accepts equation 4.9, the phase of the p°

photo-production ampli#ude pr(o) is the same as that of'fpp(o).
The magnitude»of the amplitude fpp(o) and the p-nucleon

total cross section op . which is related to it by the optical
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theorem, are determined from p° production experiments through the

VMD relation

dv - _L. EM _géi:)—'
Z{(b’?“)?o]’)tw‘,(,%(q_r U'g'z(l+{57') (4.13)

which follows from equation 4.9. We have used the value
yo2 RS e (28)
i = 0.5, taken from the compilation of S.C.C. Ting , and

the values of g% (yp = p°p) from a fit to data of p° photo-

production on hydrogen (37).

These values and other parameters
for the calculations are listed in Table 4.

It is to be noted that the values for the p° total cross
section cp decreases with increasing gnergy. There are further
indications that op is falling with energy:

(a) GY is decreasing with energylin a similar manner at

(38, 39)

energies of several Gev It is to be noted

that according to VMD

2
- Zen (ﬁ)‘.’. )-l
V}_T Z wr | Vv (4.14)
V’?i?l¢
. ‘o (33) _.
(6), The additive guark model gives

I
V?"‘;_{V?r'f +v;_}
and the mT-nucleon cross sections also fall with

energy at a rate similar to that deduced for Up here.
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B. The_amplitudes for the vector mesons w and_92.

The contribution of the vector mesons  and o to the
reactions discussed here is small compared to the contribution of

the p° meson, mainly because their coupling to the photon is weaker.

. 2
We have used for the coupling constants the values(zs) Eﬁ-= 4.69
2 o

Y . ‘ .
and —Q—-‘; 3.04. The ¢-nucleon total cross section ¢

am
to be 12 mb (28).

® i; taken

For the w-nucleon total cross section cw we

use the same value as for ap (40).

We have used the same phase g for the amplitudes of all

three vector mesons.

The direct ddupling between different vector meson channels
has been neglected (see equation 4.11). Its possible influence on

the reactions discussed below is Probably very small.

C. n+ photo-production.

Within the VMD model we assume that only the f meson con-
tributes significantly to the ﬂ* rhoto-production reaction. Then
the w+ photo-production amplitude has no influence on the ratio
between cross sections on nuclei and on brotons, which is the ratio
we are interested in. The n+ -nucleon total cross section

from reference (41) is listed in Table 4.

4.2.3. Incoherent p ° photo-production

17)

Gottfried and Yennie( describe incoherent p° production

in terms of a supe;position of one and two-step processes. In the
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one-step process (fig. 2a) the p° meson is produced incoherently
on a nucleon and then proceeds, with some_damping, to be emitted
from the nucleus which has been excited. The two-step process
(fig. 2b) consists of coherent production 6n one nucleon (no
nuclear excitatiqn) followed by incoherent scattering (nuclear

excitation occurs) of the p° meson on another nucleon.
We arrive at the same result (4) by using equations 2.13

and 2.14 for a system of particles consisting of the incoming photon
Y and the diffractively produced p°. Because of the smallness of
the electromagnetic interaction amplitude, we consider only one-step

processes for coherent  production. Equation 2.7 yields the

wave function (fp(r‘)‘_ given by

w

e (R k)2’
(P?(L)Z)z_%vf—' Al’?(")z)e— v f)

(4.15)

8

z
A ot (de’ p(b, 2"
e R [ )

The wave numbers for the photon and p°meson are k’Y and kp respec-

tively, and the quantity or')' ,defined by equation 4.2, is essentially

the (—nucleon total cross section cp .

Ignoring the very small damping of the incoming photon, equations

. 2.13 and 2.14 can be re-written in the form

{1

1) 0
% -:l‘—; eff :f‘“ 2 I(b2)

with



42

00
, ° -A da’ p(b,
: [(h,2)=9Z" A g (he) A% S8 1)
(4.16)

xlei,(kf-kg)z:_l_ (PYU’)"")}L

°

where is the p° photo~production differential cross section

do
ag
on a neutron or proton (taken equal). The effective nucleon

numbex Ne is a function of A, energy, and op' .

. ££
5 At low enerdgies around 2 Gev the one-step process

dominates. The two-step process is inhibited due to mismatch of
the photon and p° meson wave numbers because of the mass of the p°

meson. Ignoring the real part of the amplitude one has then an

incoherent production cross section

{ : do T dan N (0, V'g') (4.17)

ﬁ with the éffective number N (0; , 0p) defined in equation 2.16.

At very high energy where the mass of the p° is negligible, we find

do-®_ dv°
aa * da N(w%) .

The photon in this case behaves as though it were a p° meson.

Since N (Gp ‘ Gp ) is considerably less than N (0, op ) the cross

section has fallen in going from photon energies of a couple of

Gev to infinite energy. At intermediate energies the cross

section decreases monotomically as the calculations of references

(17) and (42) show.
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B. The comparison with experiments.

(4) the incoherent photo-production of

We have calculated
p°® mesons on different nuclei and for different energies. The
results are shown in fig. 11 along with the available experimental
data (42, 43). It is to be noted that, in contrast to what some
authors have expected, we £ind a relatively small variation of the
effective nucleon number Neff with energy. This is a fesult of
the values used for cp which are relatively small and decreasing
with energy (see section 4.2.2 and Table 4). We remark that at
the momentum transfer under consideration, there should be some
correction due to higher order multiple step incoherent processes.
We come back to this point below;

We conclude from the comparison of fig. 11 that there is
no clear discrepancy between the experimental data and the theo-

retical predictions. However, the experimental error is sizeable.

4.2.4. Incoherent_gf photo-production.

The calculations for incoherent w+ photo-production on

nuclei (17, 3) are very similar to those for incoherent p°production,

even though the pion is not coupled coherently to the photon and p
meson. Besides a factor Z/A, where Z is the atomic number of
the nucleus, we get the same formulas as above with op in

equation 4.16 replaced by the pion-nucleon total cross section cﬂ;

-]

. + . . . .
gg being the 7 photo-production differential cross section
on protons. Again, we have a one-step low energy limit with

and
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z P - X
Neff = K-N (o, oﬂ ), and an infinite energy limit with
_Z - o
Neff =3 N (¢ , crTr ), where the photon behaves like a p° meson.

In this case of ﬂ* photo-production we have, in additionm,

determined the contribution to the cross section'by processes with

(5)

two incoherent steps . Figure 4 shows the corresponding dia-

grams. Appropriate formulae for the case of elastic scattering

(15, 19). In analogy, we

have been derived in the literature
find that with the assumption of equal elastic scattering amplitudes
fnn = fpp one has the following expression for the two~-incoherent-
step contribution in the limit of high energy, where the incoming

photon acts like a vector meson:

A ar) A P
TE @ =£Z@) LN (v)
a.
X E ——-q' e @ +,a'u.q2-

T a+ta,
In the low energy limit we have

ey =R 45 [N o, - )

2
a'u. 2
Vel a czq.aulci
U oa+a,

where the effective numbers N (o; , 0z ) and Nm(c) are defined in
equations 2.16 and 2.21. Here o_, [0] is the elastic [total]
cross section of a pion or p° meson on a nucleon, and a [ajp ] is
the slope of the elastic [production] differential cross section

of the pion or p° meson respectively.
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For intermediate energies we evaluate the two-step
contribution to the cross section approximately by linear intexr-
polation between these two formulae with the parameter

x={N -N; (0} / {N (0,0) =Ny (6)} ; whereX=0[X=1]

eff

corresponds to the infinite [low] energy limit.

Figure 12 shows a comparison of the calculated effective

£ (including two incoherent steps) with ﬂ* photo-

£
production measurements (44). The normalization of the calculated

number N
e

cross section for every value of momentum transfer is fitted to the
experimental data. This was necessary because the measured

effective number Neff(exP) shows a strong t-dependence due to nuclear

correlation, which is discussed in chapter 5. Thus it is the varia-

tion of Ne with energy and with nuclear size that we utilize to

££
make a comparison between theory and experiment. Figure 12 shows

1

reasonable agreement.
We note that the contribution by processes with two in-

coherent steps is of the order of 15% for lead ahd_S% for carbon,for

all values of momentum transfer considered. Again, we are interested

in the A-dependence of'this contribution.

A similar amount of two-step contribution is present for in-
coherent p° photo-production. However, the effects of correlations
introduce cross section changes of the same order of magnitude in the
opposite direction. In any case, it appears to us that present data

does not make necessary their consideration.
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4,2.5. Photon-nucleus total cross sections

Total photon-nucleus cross sections have been calculated

(2). One calculates the forward photon-

by several groups
nucleus scattering amplitude using eikonal methods and then invokes
the optical theorem to get the total cross section. The scatter-
ing amplitude, according'to VMD, is the sum of two amplitudes (see
fig. 9), the diffractive scattering amplitude, corresponding to
photon scattering on each nucleon, summed over all nucleons
(proportional to nucleon number A) and a two-step regenerative
amplitude corresponding to photo-production of one of the vector
mesons p, W or & on one nucleon followed by radiative capture on
another nucleon. The coupling between the vector mesons w.and 9
is neglected. The damping of the intermediate vector mesons by
the target nucleons creates a shadow, which exfresses itself by the
fact that the total cross section o(y, A) is not proportional to
the nucleon number A.

There is now experimental data(38' 45)

confirming the
presence of this nuclear shadow. It is difficult to fit these
experimenﬁal data if one assumes the p° total cross section cp is
larger than 30 mb (38).. This raises the question of the validity
of the VMD model in its present form. It was suggested that
heavier vector mesons, so far unknown, were coupled to the photon in
the same way as the vector mesons p, w, and & .

(5)

We have done calculations for the photon-nucleus total

cross sections using the parameters discussed in section 4.2.2. The
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results are shown in fig. 13 (full lines) together with data from
reference (38). The purpose of these calculations was to show
that one can get around the assumption of additiénal heavy vector
mesons by using realistic values for the two-body amplitudes. As
ih incoherent p° photo-production we note a comparatively weak
energy dependence of the photon total cross sections. This is
due to the decrease of cp with energy and to the presence of a non-

zero real part in the p-nucleon forward scattering amplitude.

4,2.6. Some difficulties of VMD and the asggggtion

of mass dependent amplitudes.

We conclude from the above calculations that VMD together
with the eikonal methods used provide a reasonable description of
the corresponding experiments. The experimental uncertainties are

still fairly large, and it is not possible to say if any additional

assumptions are necessary to describe the experimental data. . However,

we note some apparent difficulties:

(a) The ratio of photon total cross sections on nuclei
and nucleons respectively indicate that for heavy
nuclei the calculated values are too low, as shown in

fig. 13 (full lines);:

(b) The theoretical result for the effective number'Neff
of incoherent ﬂj photo-production (see fig. 12) is
too low for heavy nuclei. This comes out more clearly

in fig. 14, where the same data is presented in a
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different way: For every value of momentum
transfer and for the energies 8 and 16 Gev, the
experimental and theoretical values for Neff are

normalised to the corresponding value for carbon;

(c) The calculations for ﬂ* photo-production predict
too strong an energy dependence, as already noticed

by the authors of reference (44);

(d) There are several methods to determine the p° total
cross section on nucleons cp, which give slightly

different results.

Besides the methéd.described in section 4.2.2, we have determined
a from measurements of the photon-nucleon total cross section Uy’
using equation 4.14. These values of cp are listed in Tagle 5.
We have taken the same values for the coupling constants %¥: ,
and the phase B as in section 4.2.2. .The values of GY are fits

to the data from references (38) and (39), and are listed in Table 5.
The contribution of the mgsonsl w and ¢ to the photon total cross
secfion is taken to be 16% (38).

We mention a third method to determine cp which is by

(26, 27)

coherent p° photo-production experiments on nuclei The

final results of these experiments have been summarized by D.W.G.S.Leith
in reference (10).

The difficulties mentioned above disappear if one assumes
mass dependent amplitudes. Leaving the VMD identities of equations

4.9 and 4.10 unchanged, we make the following assumptions:
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A =0.9. This means the change in mass from the incoming m, =
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A. The diffractive amplitude fpp is a function of
the difference between the masses of the incoming
and outgoing p-states, that is the amplitude

fp(m. ), P(m_.) which appears in the diagrams of
in out

. . . 2 - 2
fig. 8 is a function of (min met ).

B. The amplitude £(p°p - n*n) which appears in the
VMD description of n* photo-production reaction is

-]
a function of.the mass of the virtual p meson, as

discussed elsewhere (46, 47).

Considering assumption (A), we find that the diffractive amplitude
appearing in the diagram (b) of fig. 8 (min # ot ) may be
different from the amplitude of the diagrams (a) and (c)

(min =Mook ). We express this difference by the factor A which

is defined by the generalization of equation 4.13
do- o)At 55-«(3“)"
At (¥7 €?2=02 e wr \ww ) ¢ (1+4%)

For A = 1 we have the usual VMD, for A # 1 we have a mass dependent
amplitude. .

The value of A can be determined by comparing the values
of 0 obtained from p° photo-production on hydrogen (see Table 4)
and from photon total cross section measurements (see Table 5).

We find A to be essentially energy independént with a mean value of

0
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to the outgoing mp = 765 MeV decreases the diffractive (pN - pN)

amplitude by a factor 0.9,

These assumptions affect the calculations of cross

sections on nuclei in the following way:

(a) Photon-nucleus total cross sections:

The ratio of the contributions of the two-step process

of fig.9% to the one~step proéess of fig. 9a decreases.
Since the two-step amplitude interferesdestructively with
the dominating one-step amplitude, the total cross section
increases. The result of the calculation is shown in
fig. 13 (broken 1ihes) and exhibits good agreement with
the experimental data. We note that we have used the

slightly larger wvalues of op given in Table 5.

(b) Incoherent w+ photo-production:

Here, in addition, we must know the mass dependence of

the production amplitude £(p°p -+ w+n) according to
assumption (B). We use the value Ap“ = \/5?3 for the
ratio fpﬂ+(mp = 765 M?V)/fpn+(mp = 0). This wvalue is
obtained(47) by comparing experiments of ﬂ+ photo-production
with p producti&n by pions on protons. The result of this
is, as in the case of photon-nucleus total cross section
calculations, that the two-step amplitude of fig. 10b
decreases in ratio to the one-step amplitude of fig. l0a.

Since the two-step amplitude interferes destructively with

the dominating one-step amplitude, the effective number Neff
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increases appreciably. The detailed results are
shown in fig. 14 (broken lines) and are in good agreement

with the experimental data.

(c) Incoherent p° photo-production:

We note that the calculations of p° production on nuclei
are not affected by the assumption of mass dependent
amplitudes. However, there is a slight change in the

value of op which is now taken from Table 5;

We come to the conclusioﬁ that the VMD model, together with
the eikonal methods used, provide a reasonable description of the
photo-reactions on nuclei described above. : However, if we allow
for mass dependences of the diffractive p-nucleon amplitude £(pN 4-pN5
and the production amplitude {(f(p°p = ﬂ+n), and if we determine these
dependences from two-body reactions, we fiﬁd that the calculations for
photo-reactions on nuclei (photon-nucleus total cross sections and’
incoherent w+ photo-production) show a better agreement with the
experimental data. Up to now, the experimental uncertainties are
too large to clearly-decide whether the two-body amplifudes are mass

dependent in the way discussed above.

~
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4.3 Neutron-nucleus total cross sections

Recently there have been measurements of neutron total

(48) pexrformed on Be, C, Al, Cu, and Pb with one

cross sections
per cent accuracy at average neutron momenta of 8, 11, 14 and 21 Gev/c.
For all eleﬁents there is a smooth drop of about 3% between 8 and 21
Gev/c, very similar to that for the corresponding p-p and n-p total
cross sections. - Normalizing the cross sections to the n-p total

cross section, no momentum dependence is observed. This is a little
puzzling for the heavy nuclei, since one.expects to be apprqaching the
physical situation of a "black target" with a geometrical cross section,
for a nucleus as heavy as lead. On the other hand, the energy
dependence under consideration is rather weak and the blackness of the
heavy nuclei is weakened if one includes the regenerativeAamplitude re-
sulting from first diffractively producing nucleon isobars on one
nucleon, and then having them regenerate a neutron (see fig. 15). To
what extent the regeneration contributes is at this point to be

(49)

answered through calculation. Pumplin and Ross have suggested

that ;eggnerative effects are quite strong, depleting total cross
sections of heavy nuclei by some 20% at energies of the order of 20
to 30 Gev. The recent data do not bear this out, however, and we
shall return to a discussion of this question below.

(6)

We have made calculations of the elastic scattering of
neutrons from nuclei using the coupled channel eikonal approach des-
cribed in chapter 2, and taking into account regeneration of neutrons

after production of the neutral éharge state of the isospin 1/2 iscbars

N* (1400), N* (1520), N* (1688), N* (2190). In our calculation we
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have represented the intermediate nucleon ispbars in an average way
by one N* channel, with the average mass mN* = 1520 Mev. We can

do this approximation because we find that the N* contribution to

the total cross section is only of the order of a few per cent.,

The production cross sections for the different isobars,‘taken from
reference (50), are added together and give the value for: the total
N* production cross section g%-( nN -+ N*N)t=0='7.5 mb/Gevz. The
two-body parameters for neutron elastic scattering on protons and
neutrons are listed in Table 6. The total cross section of the
intermediate isobars on nucleons is taken to be Opx = 40 mb. We
have taken the phase f = Re £(0)/Im £(0) +to be equal for p-p and n-p
scattering. We have also assumed the same phase for the diffractive
production amplitudes. | For the nuclear shape we havelused the para-
meters from reference (25) listed in Table 1.

The results of our calculations are shown in fig. 16. The
measurements and calcﬁlations agree very well. The effects of re-
generation as included here are small as shown in fig. 16 for lead and
carbon. We note now the uncertainty in nuqlear radius, the small but
non-negligible experimental errors in nucleon-nucleon total cross
sections and B (which could change our results by * 1 to 2%), and
the neglect of nuclear correlations ( + 1 to 2% for short range
correlations, 0 to 2% for deformation effectsi. Given all:of this,
it is not completely clear that the effect of N* is manifest at present
energies. However, for the heaviest nuclei, aé seen in fig. 16 for
lead, regeneration contributes in an energy dependent way to improve

the energy dependence of the calculations when compared with experiment.
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The authors of reference (49) include virtually the
whole missing mass spectrum as contributions to the regenerative
amplitude. The forward differential cross section from this
spectrum is about half the forward elastic differential cross
section. The fact that the‘regenerative amplitude is not nearly

so strong as suggested in reference (49) could be the result of the

following:

(a) There are many diffractive amplitudes but with

different phases and therefore much cancellation.

(b) The non-resonant background included in the work of

reference (49) is largely non-diffractive.

(c) Non-resonant diffraction products spread too much
before travelling a distance of the order of inter-

nucleon spacing to generate a nucleon.

In connection with these possibilities, a careful study
of incoherent scattering of nucleons from deuteron targets is of
interest (51). Incoherent regeneration on the deuteron can still
be expected to be rather strong if the weakness of coherent regenera-
tion results from effects (a) or (b) above. It will be weak if
effect (c) is responsible for the weakness of cocherent regeneration,
since the two nucleons in the deuteron are relatively far apart (=2 f£m).
At the moment the data are not quite good enough to be definitive.

We note that a recent experiment (52) jjgicates that
point (b) is true. The experiment measures the N* production cross

section 0 in the missing mass reaction mp - TM* . The authors para-
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meterize the dependence of .0 on the incident momentum p by the

formula 0 « p. ' , and find the value n = 0.7%0.1 for the back-
ground contribution, whereas for N* production as well as for elastic
scattering they find the value of n to be of the ordexr of 0.2. This
indicates that the background in the mass spectrum for this experiment
is mostly non-diffractive. The authors point out the similarity

between this experiment and proton-proton inelastic scattering.
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5. THE EFFECT OF NUCLEAR CORRELATIONS

5.1 Introduction

In the calculations above we did not consider the effect
that correlations between individual nucleons of fhe target nucleus
can have on the reaction cross section. With the product density
distribution of equation 2.1 we assume in fact that the nucleons
inside the nucleus move independently of one another. On the other

hand, we know that there are correlations between nucleons which

are due to

(a) the Pauli exclusion principle (Pauli correlations),
(b) the interaction force between nucleons (dynamical

{ correlations).
We distinguish

(i) short range correlations that are characterized by
a distance short compared to the nuclear radius.
They can be induced by the Pauli exclusion principle and
by a hard core repulsive interaction between the nucleons;
(ii) 1long range correlations that involve distances of the

order of the nucleus.

In what follows, we consider only the short range correlations in the

nucleus.

For high energy reactions the contribution of these

correlations to the cross section is generally small since it is
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a contribution from a multi-step reactioﬁ, which takes place
between the incoming particle and the nucleons that exhibit the
correlation.
The effect of correlations to coherent amplitudes is
most easily described(l’ 7, 53) by an effective increase of the
two~-body cross sections of the order of a few %.. The effect of
correlations on the incoherent reactions is characterized by a for-
ward dip in the t-dependence of the differential cross section, the
detailed form of which depends (7 on the form of the correlations
as well as on the damping of the reacting particles inside the nucleus.
There are several methods of determining the nuclear cor-

relations. The most important ones are the following:

(a) theoretical calculations which assume a certain form
for the interaction force between the nucleons (see,

for example, reference (53) ):
(b) medium energy reactions (see, for example, reference (54));

(c) high energy reaction experiments (see, for example,

references (55) and (21) ).

In order to have a consistent picture, these different descriptions
should agrée with one anéther. Unfortunately, the uncertainties

are large: On the one hand, the form of the nuclear interaction is
not very well known. On the other hand, in experiments, it is

difficult to clearly separate the effect of correlations from other

possible influences.
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7 of high

In the following we present a description
energy reactions of particles with nuclei, with special emphasis
on the effect of correlations on cross sections. At this point
it is important that we also consider the effect of the range of
the two-body interaction, since it is not much smaller than the
range of the correlations. Because of.the smallness of the cor-
relation corrections we now Keep terms of the order of 1/A which
are given by the Glauber multiple scattering model (l), and which
we have neglected in the optical model calculations above.

The following calculations are presented for the case of

particle scattering of nuclei. We note that similar formulae hold

for the case of diffractive and non-diffractive production reactions.

5.2 The definition of the correlation function

We restrict ourselves in the following to the discussion
of two-body correlations, since the influence on high energy cross
sections of correlations between threé or more nucleons is expected
to be very small indeed. We define the two-body correlation
function g(r; , rp ) of the true nuclear ground state wave function

N
u through the equation

3 s 3 ~ | r
fcl o fn Al [, n, ) )]
(5.1)

= p(n) pln) [I+ gv("-)"z)]
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with the single particle density distribution

3 3 K] ~

F(r,):jal Rdn..dn u.I(r,,r“.. ,rA) (5.2)
From the normalisation of gl(rl ;) sevy rA) and p(r) follow
the identities

e Ly ol @,5n) =
hodn ¢ ) f("z) 3'77)7-) =0

and (5.3)

foj?'l’" F(r.) ga(r;,r‘,_): O forallr,,
which will be useful below. From now on we consider for the

nuclear ground state the wave function up given by

2 A |
w, (i n,wn) =_T|“€(r;) [H’Zg(";)q)] (5.4)
L=l iy

which reproduces the same single particle density p(r) and cor-

relation function g(ry , rp ) as does the true wave function EI'
The typical form of the correlation function g(rji , ¥z )

can be studied in simplified models, such as a simple Fermi gas

model (1) or in a model with a repulsive core interaction between

nucleons(ss). In both cases the correlation function,

glry , ro ) = d(ry - ra ), is translational invariant. One has



v

ps

A

60

g(0) = ~1, so that the wave function vanishes as the nucleons come
together, and g(r) approaéhes zero for distances r large compared
to the typical range of £he correlation, which is of the order of
one fermi.

For the following calculations it is important to note
that the value of the correlation range lies between the nuclear

radius and the two-body interaction range, and is close to the latter.

5.3 Elastic Scattering

Within the Glauber multiple scattering theory (1) the

scattering amplitude of a particle on a nucleus near the forward

direction is given by
¢ iqb A
F= 2 (e Ta=TT {i-re-a)][F> e

where |I> and |F> designate the initial and final state of the
nucleus, q is the momentum transfer and T(b) is the two-body profile
function defined in equation 2.4. For elastic scattering the

nucleus remains in its ground state II)' and we have

P = (4 41| |-ﬁ{|.- F(b-s)ID 6.
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In order to evaluate the above formula we introduce for

convenience the quantities

t(b)=fc13r f(r) M (b-s)
and _ ' (5.7)

7(5)=f43ﬂ 4’ e(r) pln) g(5)n)
X r(b‘sl) r(b"’sz.)

where s represents the perpendicular component of the space vector
> >
r= (s, 2).
The gquantity t(b) is related to the nuclear profile function

T(b), defined in equation 2.17, in the following way: We define an

effective density function

v_ ik Z_y / et
g (64 o T o

which is a folding of the density function p(r) with the normalized

two-body interaction -2,"—;]:3)— I'(s). In the limit of zero range
interaction we have pR(r) = o(x). Thus the effective profile

function

~I;(L):Afala O (b,2) (5.9)

includes the effect of the two-body interaction range, and we can write
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t(b)-z”f:’ Lre =L RG) e

with the quantity o' = £!§£21-= o(l - iB) introduced in

equation 4.2.° We note that :he value of t(b) is usually of the -

order of 1/A.

For the evaluation of the quantity q(b) we make use of the
following approximations:

(a) We assume a gaussian form for the two-body

interaction amplitude

f(q) =flo) e

which yields with equation 2.4

_& g2

z 9

2
fc) b
(b)) = e Za
(B) We assume that‘the correlation function g(r; ,'rz)

is translational invariant, i.e.

i}('i) R)= 2}%( - )
(c) We assume the two-body interaction range to be.short

compared to the nuclear density structure.

(D) We assume the correlation range to be short compared

to the nuclear density structure.

In order to evaluate q(b) given by equation 5.7 we introduce new

coordinates (S, 2) and (s, 2) by

. : : . N . « 2
. LA . ..
R Rhgtiiss o et O T D Bt T S e s L L
A R R R BRI i s e B e R e
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n
I

1 1
5-(51 +s5) : 2 3-(z1 + 25)

and

-
N
]

2] - 2z2

0
]

51 - 82

Using the approximations (a), (B), and (C) we find

q(b) fo‘Z d’s de

Ié Ta
s*
pleeg,2ed) pb-5,2-2) glo2) e e
Since for the d?s and dz integration the variables s/2 and z/2
enter the two factors p(b + s/2, Z2 + z/2) p(b - s/2, Z - z/2) with

opposite sign, the first order variation of the product cancels.

Therefore we can use (D) to good approximation, and write

W) =T (42 97, 2)

52 ' (5.11)
xjolls e ka jdl 3’(5)2)
We define the correlation length & by
L dts e” '-l-a. d S (5.12)
6w a & ( E)

and the gquantity Q(b) by

od
Q(b) = A* jclt f?’(b,z) (5.13)
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Then equation 5.1l can be written as

a’(b)- o &(b) ) (5.14)

Now we go back to evaluate the equation 5.6 for the
elastic amplitude Fel(q). Using the density distribution of

equation 5.4 and the identities of equations 5.3 we find that

<Al f1-re-)In)
(1-t)* +{A(A~I)(;~ta))"f‘7(e)
= (1 -t(s) +LA 7(5))/\

We have used here the following approximation:

(E) Compared to terms of the order of At(b) we neglect
terms of the order of A3t(b)é(b), altg2(b), and higher
order terms involving q(b). This is justified
because a numerical evaluation shows that At(b) is
of the order of one and Ag(b) << t(b). |

With equations 5.10 and 5.14 we find that

(I!fl:{l~r(b~5;)}ll> (5.15)
A :
=(1- SR + T Wu)) =(1- Z—Z'UH)A

where

T;(g) =.7;\ (b) -—T’gé?(l») (5.16)
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is the effective profile function of the nucleus that includes the
effects of the two-body interaction range as well as the nuclear

correlations. Using equation 5.15 and the expansion

(1-2)A < ™ (1-25
A - ZA
which neglects some terms of the order of X% and higher, we find

for the elastic scattering amplitude given in equation 5.6 the

expression
r=fo [Ny 0, 2) AN £ o

Here we have used the effective nucleon numbers N° which are

defined by

iag
-~

e ) - (i

P ‘ x[V’T‘:U’)]m e—VT;(b)

We note that these effective numbers are generally complex nunmbers
that take into account the two-body interaction range and the nuclear
correlations.

We see that the effect of the interaction range and the
nuclear correlations on the elastic scattering amplitude of equation
5.17 is shown by the replacement of the nuclear profile function T(b)

of equation 2.17 by the effective profile function Tc(b) defined by
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the equations 5.8, 5.9 and 5.16. For a repulsive correlation, such
as the Pauli correlation, the correlation length ¢ is negative and
Tc(b) is larger than T(b). This means the probability for the in-
coming particle to have a reaction with some target nucleon is in-
creased by the presence of nuclear correlations.

Another physical interpretation of thi§ effect is to point
out that the repulsive correlations decrease the probability that one
nucleon is very close to another nuéleon. Thus the screening of
the nucleons by one another diminishes, and the probability for a re-

action with the incident particle increases.

5.4 Summed cross section for elastic and inelastic scattering.

In high energy reaction experiments with nuclear targets
it is often not possible to observe the final state of the nucleus.

In this case one uses the closure relation

2> IR =1  (5.29)

all states|F)

and assumes that the experiment determines the sum of reaction
cross sections for all possible final nuclear states. . For high
energy reactions the closure approximation is good becausé the
excitation energy of the final nuclear state is small compared to

the energy of the incident particle.
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For high energy scattering of particles on nuclei we have

the summed cross section

d v 2 X
Z %) = Fo()| =2 F_GQ) E (@) (.20
) ("l) % ’ iF 1 , ,ZF; IF IF

where the summation runs over all possible final nuclear states |F>'.

We use equations 5.5 and 5.19 and get

PT(4tL i '37(‘""'){
4t Jd It e !

-<I[ﬁ; fi-Te-s) |ty
-l {-rte-a))y

dvg, _
1o l1)F
(5.21)

+<I]ﬁ{(l-r(6-s;))(l~T'*("“Sz))}ll> } |

The first terms in the bracket are the same as already evaluated
for the elastic scattering amplitude (see equation 5.15). For
the evaluation of the last term in the bracket we again use the

density function of equation 5.4 and the identities 5.3. After

- some straightforward calculations where we use the approximation (E),

described in the previous section, and the expansion

(ex g ) = (1e5)" (10 2)"

_%(,_}_f_)kl (l+%)k‘ (5.22)
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which neglects some texrms of the order of %Z and higher, we can

write the summed scattering cross section in the form

d o= 2 kz 2 L
Se = | F _ L b d*b
d (9) (1) ¥ tr* JJ (5.23)

. ' ’ A-1
ebﬂ(‘bb,) (l‘ t(‘o) b') +é‘ a’(L) L')) 5
{-atwew (-t ) (1-tt )"

A ; BUPRY
(b6, )24 q ) W1 -t Gy - tFw)

+‘/—§.(%’<l’l"’)+ 3{0’)5)):('-tc(b)"t:(l:’))A }

where the index c of tc (b) indicates that the correlation effect

is included through

tc(!»)=t(b)-—é q (k) (5.24)

with t(b) and g(b) defined in the equations at 5.7.

The quantities t(b, b'), q(b, b'), and a(b, b') are defined by

E(e,b)= (4 o) T(bos) F¥(V-5) (5.25)
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Gl )= [dn don pn) pla) grisn)
{z r(b-s) r*(b'—s,)[r(b-sth T¥(e'-s, )] (5.26)
= T(bes,) T¥(4-5,) T(b-5,)T ¥4 5,)

Faw) = [d £ gl p) g6 ,n) -
T (b-s,) T¥(' -5s,)

(5.27)

Discussion of equation 5.23.

do
As expected, the summed scattering cross section dQsc

is the sum of the elastic scattering cross section |Fe1(9)|2 and
contributions from reactions where the final nuclear state is
excited. The first and higher order terms in the expansion of

. A . A-1 .
the factor {l-t(b,b') + E-q (b,b") of equation 5.23 corres-
pond to the contribution to the cross section by multiple-incoherent

-step reactions (15’.19). From now on we restrict ourselves to the

contribution from reactions with, at most, one incoherent step and
therefore negléct this factor.

The contribution tg the cross section from the first term
in the bracket of equation 5.23 will be called the semi-coherent

contribution and can be written in the form
dog, . | Z c o'y |2
@) =g lfel” [N ()] e
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with the effective number N? defined in equation 5.18. The
characteristics of the semi-coherent contribution is
(i)  its t-~dependence which, like that of the elastic
cross section, is determined by the shape of the nucleus,
and

(ii) the fact that it is negative and about a factor %

smaller than the elastic cross section.

The second term in the bracket of equation 5.23 gives rise
to the incocherent cross section which is characterized by a t-
dependence equal to that of the two-body differential cross section.

We find that

d o5, L
o @= @ N, () (5-29)

with - T (b)
Neﬂ (o,%)= jdzb e < x

(T -5 Q)

(5.30)

We note that ¢ is the non-complex total cross section of the two-
body interaction. In order to derive the term -4£& o Q(b) in
equation 5.30 we have used the short range approximation (C) and

have assumed that

(F) the two-body interaction range is short compared to

the typical correlation distance.
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The last term in the bracket of equation 5.23 gives
rise to a contribution, which we call the correlation cross section,

with a t-dependence typical of the correlation function. We find

that

()= |f@)F G -

(5.31)
[d2 Qe T B

where
G() = (& e 50r) (5.32)

is the three-dimensional Fourier transform of the correlation
function g(r). We obtain this result by using the identity (15)

-q (b-b'
7( )]f(ﬂ)lz

SAZS I(b-s) T¥*™-s) = T;-L fc‘l? e
together with the approximations (B) and (D) discussed in the pre-
vious section. We note that equation 5.31 holds for values of g
large compared to 1/R, R being the nuclear radius. For the region
of smaller values of g, where elastic scattering is dominant, long
range cor&elations, which we have neglected in our calculations,
become important.

The summed scattering cross section then is given by

dog, .y _ 2 d9%. | dom. | dve., _
An(a')"Fe‘q)l 7o tin tun <
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dog 5‘( )= “"(0), (5.33)
dQ o o |
{IN“G; 0, ) 420Ny 0, F) NE (45 5)}
-8y ) }
+f@l N,#(b“,g)[l +n(v) G(q)]

Here we have used the equations 5.23, 5.17, 5.28, 5.29 and 5.31
and have dropped some terms quadratic in %-oi in g(r). The

effective numbers N and N ére defined by the eQuations 5.18

eff

and 5.30, and G(g) is the Fourier transform of the correlation

function g(r). We have introduced the parameter

fdh Q) & T

(v)=
- b (5.34)
[ {d*b T(s) ™™ T
whose value depends on the shape of the nucleus. - For the Fermi
A s s .
gas model we have n(o) = p = Tolume * For more realistic density

distributions, such as square well or Wood~Saxon densities, we find
that n(c) is smaller and decreases with increa;ing two-body cross
section o. This og~dependence is more pronounced for heavier nuclei.
The smaller value of n(o) can be explained by the fact that a lérge
portion of the cross section is due to reactions that take place at
the surface of the nucleus where the nuclear density is smaller.
Values of n(o) are listed in Table 7.

At this point it is important to note that, for the above

calculations, we have used the assumption (B) that the correlation
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function g(rj , rp) is translational invariant, which implies

that g(r), with r = r1-rp , is the same in the center and at the
surface of the nucleus although the nuclear density is quite
different. This assumption is difficult to justify, although it
could be tested for Pauli correlations by means of calculations

with anti-symmetrized wave functions (56).

5.5 Discussion

Nuclear correlations affect the cross sections for high
energy reactions in the following two ways:
(a) The strength of the coherent and semi~-coherent
scattering amplitude as well as the damping for
any other reaction is affected by the introduction
of the effective nuclear profile function Tc(b) of
equation 5.16, which includes the contribution from
nuclear correlations. This contribution is pro-
. portional to the two-body total cross section ¢
and the nuclearlcorrelation length & defined in

equation 5.12.

(b) There is_a direct contribution to the summed cross
section, namely the correlation cross section of
equation 5.31. It produces a forward dip in the
inelastic cross section, and is characterized by a
t-dependence given by the Fourier transform of the

correlation function g(r).
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The above calculations are done for the case of scattering, where
the incident and outgoing high energy particles are the same.
Similar results are obtained for the case of production reactions.
For diffractive production reactions, such as m -+ A; and vy + p°,
as for scattering, the cocherent forward peak of the differential
cross section overshadows the forward dip due to the correlation
cross section. However, for non-diffractive re#ctions, such as
charge exchange reactions and charged pion photo-production, the
coherent cross section is not present.

The experiment of w+ photo-production of reference (44)
shows a forward dip in the differential cross section. This dip
feflects the repulsive correlation of nucleons inside the target
nucleus due to some repulsive core interaction as well as to the
Pauli exclusion principle. Thus, the n+ photo-production data
gives information about the correlation function gl(r) (21).

(21, 53, 54)

We have used different estimates for g(r) to

evaluate the correlation length £ , defined in equation 5.12. It is
to be noted that the two-body interaction range diminishes thg effect
of the correlations. In particular, the value of £ decreases
roughly by a factor of 0.5 compared to the value for the zero range
interaction if we use the value a = 8 Gev_2 for the slope of the two-
body differential éross section. We find £ to be of the order of
~0.3 fm.

The above calculations for the effects of nuclear correla-
tions on high energy cross sections are valid for scattering and

production reactions as long as the effect of longitudinal momentum
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transfer can be neglected. Longitudinal momentum transfer effects
have been described by the multi-channel optical model in chapter 2.
We now give a prescription for how the effect of nuclear correlations,
apart from the correlation cross section of equation 5.31, can be
taken into account in optical model éalculations.

One way of doing this is to replacé the nuclear density

function p(b,z) in equation 2.3 or 2.5 by the effective density

o (hay=pthe) [1- '8 ApG2)] e

in analogy with the replacement of TR(b) by Tc(b) in the calculation
of coherent amplitudes according to equatioh 5.16.

On the other hand, one can introduce effective two-body
amplitudes. We neglect the small change of the t-dependence of
the differenfial cross section introduced by the nuclear correlations
throughequation 5.35 and by the two-body interaction range through
eqguation 2.3, wﬁich can be accounted for by a measurement of an
effective nuclear shape (see section 3.1 énd reference (25) ). We
approximate the elastic scattefing amplitude Fel(q) of equation 5.17
by Fel(q) = £(o) N° (q; 0, .;—-f ) and~define thg effective two-

body amplitude fE(O) and effective cross section VE ==V'fE(o)/f(o)

such that

f(o) Nc(o'} 0)%’) = FeL(o)sz(o)N (D)l:_'-‘") (5.36)
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where N(O, EE-), defined by equation 2.16, is equal to N° (a; o, 5*')
in the absence of correlations. The effective two-body scattering

amplitude, defined in this way, can be used in the optical model cal-
culations if nuclear correlations are to be taken into account.
Using the equations 5.36, 5.18 and 5.16 we f£ind that the

effective two-body total cross section o_ is given to good épproxima—

E

tion by the A-dependent expression

g =0 [ | -.§ 7}(%? ) g ] | (5.37)

with the quantities £ and n(o) defined in equations 5.12 and 5.34.

Some values for GE are listed in Table 8. The differences between

GE and ¢ are of the order of 5 to 10 per cent for £ = - 0.3 fm, and

they can perhaps be detected by careful experiments on nuclei using

particles whose scattering amplitudes on nucleons are well determined.
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6. CONCLUSIONS

The foregoing calculations show how high energy multi-
step reactions on nuclei can be described with a multi-channel
optical model formalism. We distinguish coherent and incoherent
production steps. The damping of the high energy particles inside
the nucleus is taken into account. Generally we find destructive
interference between the one-step and two-step amplitudes.
Accordingly, the cross section for incoherent production of diffrac-
tive channels at very high energy, such as A; production by pions and
p° photo-production, is expected to be about half the value of what
is predicted by simple one-step calculations. . This islindicated by
p° photo~production experiments(42). In the case of A; production
by pions the non-diffractive background is strong and makes the experi-
mental analysis of the incoherent cross section more difficult.

In the case of coherent production of higher mass resonances,
such as A3 meson production by pions, it is conceivable that two-step
processes contribute considerably to the cross section, with lower
mass resonances as intermediate etates. Detailed calculations aie
presented for the m-Aj;-Ajz system for different aséumptions about the
two=-body amplitudes.

Within the framework of vector dominance, detailed calcula-
tions of photo—reacﬁions have been presented in order to compare the

available experimental data with the theoretical results. Incoherent
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p° photo-production, incoherent ﬂ* photo-production, and photon-
nucleus total cross section experiments have been compared simul-
taneously in order to test the consistency of the theory. The
parameters for the calculations are taken from experiment as well,

There have been suggestions for modifications of the
vector dominance model; for example, further heavy vector mesons
could be included in order to explain the data of photon reactions
on nuclei. Within the experimental uncertainties, we have found
reasonable agreement between the experiments and our calculations,
which are based on the simple vector dominance model. If we
modify the model so as to have amplitudes that depend on the masses
of incoming and outgoing particles, we find that the agreement with
experiment further improves.

We have discussed the importance of contributions to the
neutron-nucleus total cross sections by intermediate nucleon isobars -
N* via a two-step process. The comparison with experiment shows
that this contribution is very small, from which it follows that
only resonances contribute as intermediate states, but not the back-
ground of the mass distribution. This can be understood from a
(52) that indicates that this background is pro-
duced mostly non-diffractively, from which it follows that the back-
ground cannot contribute to the coherent two-step process.

The effect of nuclear correlations on high energy reactions

has been examined. We have discussed how these effects can be in-

'corporated into an optical model description by using an effective

two—-body amplitude. We f£ind that the effect of correlations is
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(53)

smaller than has been proposed by other authors The

reason for this is that we take the surface of the nucleus into

.account in a different way, and that we do not neglect the two-

body interaction range which is not much smallex than the nuclear

correlation distance.
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The nuclear radius parameter R for a Wood-Saxon density

distribution is given for different nuclei. The values

from ref.(25) are obtained from a fit to the experimental

data of coherent p°

surface parameter is fixed to the valuve

photo—production.

The nuclear

c = 0.545 fm.

Element Atomic weight A R in fm

Be 9.0 2.35 £ 0.26

c 12.0 2.50 £ 0.23

Al 27.0 3.37 £ 0.16

Cu 63.5 4.55 * 0.11

N Ag 107.9 5.35 + 0,09
{Mf Pb 207.2 6.82 * 0,20




TABLE 2

Integrated coherent meson production cross section

normalized to the forward differential production cross

section on protons: o

(c)

do®

dt

parameters as listed for fig. 6.

(o) in GeVZ for the

A=19 2=208 | _ A= 64
16GeV 16GeV | energy 16GeV  10GeV 5GeV 3GeV
o. =0 (R= 1.4] 0.94 3.4 | 2.5 -2.2
Aq ki)
a R= 0.7] 0.96 3.4 | 2.5 2.2 1.7 0.40 0.021
prod. '
R=-0.7 | 1.03 3.7 | 3.0 2.4
o. =% R= 1.4 1.32 7.4 | 4.4 3.8
Ay 2T
o o = - . . . .
a;= Op (R= 1.4 0.19 0.68 | 0.49 0.2
pigd R= 0.7| 0.36 0.40 | 1.23 0.42 0.095 0.005. 0.00002
R=-0.7| 0.96 2.80 | 5.0  2.13
6. =% R= 1.4| 0.33 0.55| 1.01 0.35
Ay 2T

(c)

The values of ¢

are obtained bj integrating (dG(C)/dt)(t)

from t = tmin up to t = -0.1 GeV2 for A = 19 and up to

£ 2 -0.05 GeV2 for A = 64 and A = 208.



Effective number Ne

TABLE 3

£

for the parameters as listed for fig. 6.

88

for incoherent meson production

A=19 a=208 A= 64
16GeV 16GeV | o
) energy l6GeV 10GeV 5GeV 3GeV
'one-step’ 7.0 16.0 | 11.5 11.5 11.5 11.5 11.5
"|Multi-step:
pion incoh. scat. 6.8 15.6 1.0 11i.1 il.2 11l.5 11l.5
6. = o_(R= 1.4 | 3.3 8.8 4.0 5.1 11.5
A ki) :
Ap R= 0.7 | 3.3 8.9 4.2 5.2 6.6 10.2 11.5
pred. '
R =-0.7 | 3.6 9.6 4.4 5.6 11.5
0. =2 R= 1.4 | 4.6 12.4 5.5 7.2 16.7
Ay 27w
6. = o (R= 1.4 |2.8 8.2 4.8 5.2 11.8
A m
a; R= 0.7 | 3.4 8.5 3.9 5.8 7.6 10.8 11.8
prod.
R=-0.7 | 7.0 23. 6.3 13.6 11.9
g, = %0 R= 1.4 | 3.4 9.4 4.7 6.1 11.9
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P TABLE 4

Photo~-nucleon cross sections

The parameters for the two-body amplitudes of
photon-reactions are listed as functions of the

incident photon energy (see sectién 4.2.2.)

incident energy EY in GeV .3 5 8 16

g'g [ : » 2 ‘
at {(yp > p°p )téo in ub/GeV . 152 124 113 106

(fit to experimental data)

&

B= —z T —.26 -.22 -.185 ~.135

H
8
Hh

cp' in mb determined from
the values of g% (yp + p° ) | 27.6 25.2  24.2 23.6

2.
with VMD and '-Z-F=o.5

0 in nmb ' 25. 24.
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TABLE 5

The two-body total cross section cp
determined from the photon-nucleon total

cross section GY (see’section 4.2.6).

incident energy EY in GeV 5. . 8 16

o)
Y

in

(fit to experimental data)

ub 124 117 111

in

b 28.5 26.8  25.5

90
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TABLE 6

Neutron-nucleon cross sections

The parameters for the elastic two-body amplitudes

are listed as functions of the incident neutron

o~

momentum.
Nucleon lab. Re £ (o)
(o] o] B = ————
momentum PP np In £(o)
(GeV/c) (mb) (mb)
5 ) 41.0 40.5 -0.35
8 40.3 39.7 -0.33
14 _ 39.4 38.7 -0.27
21 39.0 38.5 -0.20

c and B from ref. (58)
1%

o] from refs. (59) and-(60).
np



TABLE 7

=3
The quantity 10 n(c) 4in £fm for a Wood—-Saxon

1/3
nuclear density with R = 1.14 A fm and ¢ = 0.545 fm,

as obtained from equation 5.34.

. in mbA= 208 . 108 64 27 20
5 1.07 .98 .89 .72 .65
7.5 1.02 .94 .86 .70 .64

10 ..9%6 .89 .82 .68 .62
12.5 .90 .85 .79 .65 .60
15 .84 .80 .75 .63 .58
20 .71 .71 .68 .59 .55
25 60 .61 .60 .54 .51
30 .51 .53 .54 .50 .47
35 .43 .46 .47 .46 .44
40 .37 .40 .42 .42 .41
50 .29 .31 .34 .35 .35
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TABLE 8

The effective two-body total cross section Oﬁ

as a function of o for £ = -0.3 £m and different

values of A (See equation 5.37).

A= o
208 64 27
¢ in mb
10 10.3 10.3 10.2
20 21.2 21.0 20.8
30 33,3 32.0 31.7
40 43.4 43.2 42.8
50 54.5 54.5 54.1
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Figure 1

Figure 2

Figure 3

Fiqure 4

Figure 5

Figure 6

24

FIGURE CAPTIONS

One-step and multi-step contributions to the coherent

production amplitude Falaz on a nucleus.

One~-step and two-step processes for incoherent p°

photo-production.

One-step and two-step processes for incoherent production

reactions.

Processes with two incoherent steps that contribute to

+ . .
the 7™ photo-production cross section.

The effective numbers N;(0/2) and Nj(g/2) as functions

of A for the nuclear parameters listed for figure 6.

Differential cross section for A; meson production by

: 64
incident pions on Cu normalized to the cross section

0.7

It
Q

on protons: (a) GAI T i X

c : X =1.4

(b) o T

A

]
N

The parameters for the calculation are the following:

o“ = cA3 = 26 mb

B=20 for all amplitudes

do o2
at (mp > AlP)t=0 2.5 mb/Gev

do
Gt (T > Agp), . = 0.3 mb/Gex'lz



FTN
T
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The nuclear density is taken to be a Woad-Saxon
distribution with R = 1.14 Al/3 fm and C = 0.545 fm.
For the calculation of the incoherent cross section

. -2
an average value & = 7.5 Gev  is assumed for the

slopes of all differential cross sections on protons.

Figure 7 Differential cross section for Az meson production by
incident pions on %%Cu normalized to the cross section

on protons for the parameters listed for figure 6 and

oAl = 26 mb
(a) X = 1.4
(b) X = 0.7
(c) X = =-0.7
Figure 8 Vector meson dominance diagrams for the diffractive

two-body amplitudes of a photon y, and a vector meson
V on a nucleon N:

(a) vector meson elastic scattering

(b) vector meson photo-production

(c) photon elastic scattering

Figure 9 Diag;ams for photon forward elastic scattering on nuclei:
(a) one-step elastic scattering of the photon
on a nucleon
(b) two-step process with vector meson production

and photon regeneration



(' : Figure 10

Figure 11
1. Figure 12
Figure 13
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Diagrams for incoherent photo-production of the
channel o on nuclei:
(a) one-step process

(b) two-step process with intermediate vector meson V.

Incoherent p° photo-production:

Experimental and theoretical values -of Ne are given for

££

several energies as a function of A. The calculations

are done for a Wood-Saxon nuclear density distribution

with the parameters R = 1.12 Al/% fm and C = 0.545 £m.
The effect of a change in the nuclear radius from
R =1.12 a1/3 fm to R = 1.18 a1/3 fm is shown for A = 208

at E =5 Gev.
Y )

Incoherent ﬂ+ photo~production:

The A dependence of Ne for four different momentum

f£

transfers. The normalization of the theoretical curves

is fitted to the experimental data, for each value of ‘ ;

momentum transfer. The nuclear parameters are listed
for figure 1l. The experimental errors are statistical
only.

Photon-nucleus total cross sections:

Data from reference (38) is compared to the calculations
of section 4.2.5. The nuclear parémeters are listed for
figure 1l. The effect of a change in the nuclear radius
from R = 1.12 Al/a.fm to R = 1.18 1-\1/3 fm is shown for

A = 208 at EY = 8 Gev.



Figure 14

Figure 15

Figure 16
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Full lines: two-body amplitudes from section 4.2.2.
broken lines: mass dependent two-body amplitudes (see

section 4.2.6).

Inccherent n photo-production:
The value; of Neff are given for different nuclei
normalized to the value for carbon.
The experimental data and the full line calculations are
the same as in figure 12 (two-body amplitudes from
section 4.2.2.)
The broken lines are calculations with mass dependent
amplitudes (see section 4.2.6):

(a) incident photon energy 8 Gev

(b) incident photon energy 16 Gev.

Neutron-nucleus elastic scattering:

Diagram for the regenerative two-step amplitude.

Calculated and experimental values of neutron-nucleus
total cross section. The effect of omitting. the N*

contribution is shown for C and Pb.
(25)

solid lines: calculations using the nuclear parameters

listed in Table 1
broken lines: calculations using values for the nuclear
radii which are at the upper and lower bound of

of the experimental uncertainty.



Figure 17

o8

(taken from reference 12)
Dependence of the production cross section T 4+ A ﬂ+ﬂ—ﬂ-+ A
for nuclei raﬁgipg from Be to Pb at 15.1 Gev/c. The
cross sections refer to three-pion masses in the interval
from 1 to 1.2 Gev. The incoherent events have been
subtracted by fitting an exponential t' distxibution to
the (incoherent) tail of the angular distribution, the
fractioﬁ of incoherent events in the integrated t' distri-

bution varies from 35% in Be to 22% in Pb.




— >

one-step two-step three-step
process process process
Fig. 1

(a) (b)
one-step process two-step process

Fig. 2

Explanation of symbols:

—X¥— coherent production process: transition between
channels.

—®  incoherent production.

—0~ incoherent scattering.

SR .



(a) (b) (c)

(a) (b)

(d)

Explanation of Fig. 4
smols :

—¥—  coherent production.process: transition between
channels.

—-Q/ incoherent production.

—0O~ incocherent scattering.
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A DEPENDENCE OF COHERENTA 'PRODUCTION 'CROSS-SECTION
1< M(T ) <1.2 GeV

- arbitrary
units
-3
—
| i
-1
The curves are from an optical model —40.5
densiiy: g(r):———h;c—
loexp(-T) =
Fig. |7 c=¢, A% c=1uf, a=0.545¢ 4
'g' 6in =25.4mb, 6, is the curve parameter.
o = Ref(0) y  K(T) =-0. 06(3.1t)=0
Im £(C) ' o » —0.2
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