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ABSTRACT 

Multi-Step Reactions of Particles on Nuclei 

at High Energy' 

Gregor v. Bochmann 
Department of Physics 

Ph D Thesis 
McGill University 

i 

A coupled ~annel optical model is used to investigate 

the importance of multiple production steps for coherent and iJl-

coherent reactions on nuclei. Analytic expresSions for the 

cross section are, given in the low and infini~e,energy limite 

Detailed calculations are done for a coupled n-AI-Ag 

system. For photo-reactions on nuclei, calculations are pre-

sented within the framework of ve~tor dominance, and are compared 

with èxperiments of incoherent pO and ~+ photo-production and 

photon-nucleus total cross secti~ns.' The question of the 

vali di ty of vector dominance is discussed. The total neutron 

cross section on nuclei is calculated and c~mpared with experiment. 

The possiolecontribution of intermediate N* states to the elastic 

scattering amplitude is also discussed. 

The effects of correlations in the nuclear wave functions 

on elastic and inelasticscattering at high energy are described. 

Itis indicated how these results can be used,to calculate coherent 

and incohezent production processes. 
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A coupled channel optical model is used to investigate 

the importance of multiple production steps for coherent and in-

coherent reactions on nuclei. Analytic expressions for the 

cross section are given in the low and infiniteenergy limit. 

Detailed calculations are done for a coupled ~AI-A3 

system. For photo-reactions on nuclei, calculations are pre-

sented within the framework of vector dominance, and are compared 

with experiments of incoherent pO and ~+ photo-production and 

photon-nucleus total cross secti~ns. The question of the 

validity of vector dominance is discussed. The total neutron 

cross section on nuclei is calculated and compared with experiment. 

The possible contribution of intermediate N* states to the elastic 

scattering amplitude is also discussed. 

The effects of correlations in the nuclear wave functions 

on elastic and inelastic scattering at high energy are described. 

It is indicated how these results can be used 1:0 calculate coherent 

and in coherent production processes. 
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1. INTRODUCTION 

High energy reactions on nuclei are interesting for 

several reasons. On the one hand, we can get infonnation about 

the nuclear structurei for example,· we can detennine the proton 

or neutron distribution in the nucleus, or study the nature of 

nuclear correlations. on the other hand, we can get information 

about the interaction properties of the particles that react with 

the nucleus. In this connection there are two characteristics 

that distinguish reactions on nuclei from reactions on nucleons. 

These are the following: 

(a) The nuclear coherence, which producesa forward peak 

in the differential cross section of any diffractive 

reaction thus enhancing the cross section appreciablYi 

(b) Processes with several reaction steps on different 

nucleons inside the same nucleus. 

The point (b) has been used to determine the total cross section 

of resonances on nucleons by observing reactions where the resonance 

is produced on one nucleon and scattered or absorbed on another 

nucleon inside the same nucleus. At high energy, even a very 

short-lived resonance like the pO meson has a mean free path which 

is large compared to the nuclear radius. 

When we speak of multi-step reactions in this work, we 

mean reactions with several production steps which could be either 



transitions between different resonance channels, such as between 

pion, Al' and A3 mesons, or the production of a resonance which 

transforms back to the original particle in a second production 

step. The presence of elastic scattering and absorption is 

always assumed implicitly. Most theoretical work for reactions 

on nuclei has been done for the cases of scattering or one-step 

production by using an optical model (1) or the Glauber multiple 

scattering formalism (1). However, two-step contributions to 

2 

the reaction amplitude have been found to be important for the photon-

1 t t 1 ti' (2)·d th . nuc eus 0 a cross sec on an sorne 0 er react~ons. 

We have developed a general formalism (3) that allows for 

any number of production and transition steps between several channels. 

This multi-channel optical model for coherent processes is presented 

in chapter 2, together with a description for in coherent production 

reactions. In chapter 3 ~e point out how the parameters of the 

model can be determined from experiment, and we discuss the uncertain-

ties that are invol ved. We have written a computer programme to 

be used for numerical evaluation of the multi-channel optical model. 

In chapter 4 we present calculations (3) for coherent and incoherent 

Al and A3 meson production by pions on nuclei, a comparison between 

e~eriments and theoretical calculations(4, 5) for photo-reactions on 

nuclei, and a discussion (6) of the importance of two-step contri-

butions by intermediate N* states to the neutron~ n,ucleus total cross 

section. Finally, in chapter 5, we discuss the effect of nuclear 

(7) correlations on high energy cross sections 
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2. THEORY OF MULTI-STEP REACTIONS 

2.1 The optical model for high energy reactions on nuclei. 

We consider high energy reactions of an incident particle 

on a nucleus. The outgoing channel, except for the nucleus, is 

either identical to the incident particle (scattering) or is a 

different particle or resonance (production reaction). We represent 

the incident and outgoing channels by their respective quantum numbers. We 

ëxpect a diffractive two-body reaction if the spin-parity quantum 

numbers of the incident and outgoing channels satisfy the Gribov­

Morrison relation (8) 

Pout = Pin 
S. 

(_) ~n 
- S out 

and the other quantum numbers remain unchanged. In this case the 

differential cross section for the reaction on a nucleus shows a 

forward peak due to the coherence of 'the amplitudes originating from 

different nucleons inside the nucleus. Experimentally, nuclear 

(9) coherence at high energy has been observed for elastic scattering 

h cd · (l0) d . b . (11, 12) vector meson p oto-pr uct~on , Al-meson pro uct~on y p~ons 

KO regeneration (13), and some other reactions. 

Glauber (1) has proposed a model to describe high energy 

scattering on nuclei which is based on the assumption that the phase 

shift for scattering of a particle on a nucleus is just the sum of the 

phase shifts for the reactions of the particle with each of the 
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individual nucleons inside the target nucleus. At high energy, 

the Fermi motion of the nucleons in the target is small with respect 

to the incident momentum, so that during the passage of the projectile 

we can take the nucleons as being fixed in their positions; and the 

observed amplitude is an average over the positions of the nucleons 

in the nucleus. Glauber has shown (1) that this multiple scattering 

model is equivalent to an optical model description with an optical 

potential that is determinedby the nucleon density distribution and 

the two-body amplitudes. The differential equation of the optical 

model is solved by an eikonal method, which assumes straight line 

trajectories for the high energy particles passing through the nucleus. 

Both the Glàuber multiple scattering model and the optical 

model have been used to describe high energy scattering on nuclei (9), 

and have been generalized in order to describe coherent and incoherent 

'1 d' (14, 15) Th l' ch 1 t' 1 d 1 partic e pro uct~on e mu 1:~- anne op ~ca mo e 

formalism presented here lies in the same line of development and is 

new in that it allows for any number of coherent production steps 

for a given reaction. 

2.2 The multi-channel optical model. 

We present here a multi-channel optical model of high 

energy reactions on nuclei (3) which is suited to describe the follow-

ing phenomena: 

(a) several production channels coupled coherently to the 

incident channel, and to one another; 
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(b) contributions to the cross section by multi-step 

processes (see fig.l); 

(c) the effect of the longitudinal momentum transfer 

at finite energies due to the mass differences of the 

particles under consideration; 

(d) incoherent reaction~ involving one in coherent step 

and possibly further coherent steps. 

We make the following approximations which are further discussed in 

section 2.5: 

(A) We use the eikonal approximation which is good for 

reactions at small angles and high energy. 

(B) If not stated otherwise, we neglect the effects of 

spin and isospin on the amplitudes assuming that the 

spin and isospin non-flip amplitudes dominate. 

(C) We use a product wave function U
I 

to describe the 

nuclear ground st~te II) and define the single 

particle density function p(r) for a nucleon in a 

nucleus of mass number A by 

A 
= lT p (r.) 

~ 

i=l 

where r. is the coordinate of the i th nucleon. 
~ 

The effect of nuclear correlations can be incorporated 

into the optical model by a method described in section 

5.5. 

(2.1) 
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(D) We make a large A approximation which is well 

satisfied for medium and heavy nuclei. 

In the following we first write down an optical model 

formalism that describes coherent reactions including several dif-

fractive production channels and multiple step contributions as 

represented by the diagrams of fig. 1. This includes, in parti-

cular, the effect of the intermediate states ,on the elastic scattering 

cross section(2, 6, 16) and the effect of coupling between two dif-

f t , l d d t th ' t' t' (3) rac ~ve y pro uce s ates on e~r respec ~ve cross sec ~on • 

The effect of damping inside the nucleus is always included in our 

calculation by the presence of the imaginary part of the elastic 

two-body scattering amplitude. 

We consider several channels a (ingoing and outgoing ones) 

which are described by the wave functions 1/J (r). 
a 

We suppose that 

we know all two-body amplitudes f (k ) which are the ampli tudes for 
a'a l a 

producing channel al in a reaction of the incident channel a with a 

single nucleon. The quanti ty k , is the momen tum of the ou tgoing 
a 

channel. . For a = al, f (k) is the elastic scattering ampli-
aa a \-

tude of the channel a from a nucleon.' 

The reaction of these channels with the nucleus and with 

th , 'b d 'd l (17) one ano er ~s descr~ e by an opt~cal mo e • The coherent 

production and scattering of the channel a inside the nucleus is 

described by the wave equation 

(2.2) 



which is a coupled differential equation of optical model forro. 

The quanti ty Pa = v' E2 - m~ is the magnitude of the three-

momen tum in the lab :frame of the channel a wi th mass m , where 
a 

E is the total energy of the incident particle. 

The optical potentialsin the above equation are of two 

kinds: 

(i) U (r) which gives rise to elastic scattering and 
aa 

damping for the channel a 

(ii) U 1 (r) with a # al which gives rise to production of aa 

channel al hy the presence of channel a • 

These potentials are proportional to the corresponding two-hody 

amplitudes faa
' 

• Taking into account the range of the two-hody 

interaction, the optical potentials U 1 (r) are given hy aa 

7 

(2.3) 

where the two-hody profile functions r 1 (h) are defined hy aa 

-i.. k·b 
e (2.4) 

Here, and in the following, r is a three-dimensional space vector, 

z is its component parallel to the heam of incident particles, and 
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bits two-dimensional component perpendicular to the beam. Since 

we consider reactions at high energy, we can sometimes neglect the" 

difference between Pa and Pa' and simply write the factor p instead, 

as we have done in equations 2.3 and 2.4. 

We sometimes neglect the rangé of the two-body interaction, 

given by r ,(b), compared to the extension of the nuclear matter; aa 

that is, we assume p(b', z) to be constant within the range of 

integration in equation 2.3. In this case the potentials U ,(r) aa 

are given by 

(2.5) 

This approximation is further discussed in section 2.5.3. 

2.3 The solution of the "optical mode 1 equation. 

To solve equation 2.2 we use the eikonal approximation(l, 18); 

that is, we aSSUfLie that the distances that characterize the potentials 

Uaa , (r) are large compared to the particle wave length. This is 

fulfilled at high energy. We introduce the functions ~(r) by 

(2.6) 

Substituting this into equation 2.2, yields 



The functions ra(r) are slowly varying compared to the oscilla­
ip z 

tions of the factor e a ,since at· high energies the right 

hand side of equation 2.2 is small 

We can, therefore, neglect the term 

compared to the term p2~ (r). 
a a 

'i]2fa(r) compared to 

9 

2ip -a a cO (r) in the equation above and obtain the one-dimensional 
!l z la 

differential equation 

(2.7) 

The boundary con di tion for this equation is determined by the 

following remark: Before the reaction takes place, that is for 

smallenough z (z = - =), on1y the incident channel a. is present. 
~n 

Thus, we have the boundary condition 

or for z = - = (2.8) 

'fo( (r) 

Using a Greens function method (18), the amplitude f(k) 

for scattering a particle in an optical potential Uer) is found 

to be 
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f i (13 -~ ~ .... U 
(k) = - 't'7r J cl r e. Cr) 1f' Cr) 

where ~(r) is the wave function of the particle. Extending 

this result, we find that the coherent amplitude F (k) for 
a. a a 
~n 

producing (or scattering) the channel a off the nucleus by the 

incident channel a. is given by 
~n 

We use the fact that in forward direction we can approximate 
-ik r -iqob -ip z 

a a a the factor e by e e where qa is the 

perpendicular component of the momentum transfer k - k a a. 
~n 

Then wi th equa tions 2.6 and 2. 7 we get 

cO. f .t'b e-",,·j. f ail 
-00 

which yields 

once we know the functions ~(r) by solving equation 2.7 we 

therefore can easily get the coherent amplitude Fa. a(ka) 
~n 

(2.9) 

(2.10) 



11 

for production (or scattering) by integrating equation 2.10. 

Using the spherical symmetry of the nucleus, we get 

Of) 

~ù.D((ke{)=-t,f S13J"B JO(I'DC JoB ) 
o (2.11) 

where 

J ' '( -~x 
o eX) =2.'11" Je. 

o 
is the Bessel function of order zero, and B = Ibl is the 

magni tude of the inpact parame ter b. 

The coherent cross section for production (or scattering) is 

given by 

d 0- Cc) z. 
.-;........;O(.:::i .. ..;..~ _ r. 
c:l 11 - 'Ir 

d fV:(C) 
.D(: .. ~ 

dt 
(2.12) . 

We have considered two methods for solving the 

differential equation 2.7: 

(a) An analytical method for a square-well nuclear 

density. distribution, 

(b) Numerical integration. 

For a square-weIl density distribution, the function p(r) 

is a non-zero constant for Irl smaller than the nuclear radius R, 

and zero for Irl>R, and because of equation 2.5 the same holds for 

U(r). From equations2.7 and 2.6 we get in the region inside the 
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i, M tJ(.o( l 't, (Jo) è ) 

with a constant matrix M - v ~ -
,,(0(' - J " «~' 

whose off-diagonal elements are comparatively small. 

A solution is 

( 
l '2..) __ (e i., (i. - ~o) M ) ( ) 

IlV ~ ~ ~I b) ~D 
l cc. ) fi. 01.' 1 G\. 

Using equation 2.6 and knowing that 

where zB = J R2 - B2 corresponds to the edge of the nucleus, 

we get 

12 

The term 
2 zB M 

e can be evaluated in a new system of mixed channels 

that diagonalizes the matrix M. We have not exploited this method 

for evaluating the functions 9Pa(B, +m ) because the square-well 

density distribution for the nucleus is not a good enough approximation. 
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To Obtain the results discussed in chapter 4, we 

have written. a computer programme which solves equation 2.7 

numerically and then integrates equation 2.11. 

2.4 " Incoherent'Processes 

Incoherent processes are reactions that leave the 

nucleus in an excited state. Using the closure approximation 

which is explained in some detail in section 5.4, one gets an 

expression for the incoherent cross section which is the summed 

cross section for aIl possible excited final states of the nucleus. 

An incoherent process can be seen as taking place on a single 

1 nucleon inside the nucleus. Several incoherent steps(15, 19), 

as shown in fig. 4, are possible for a given reaction. We 

present here a model which, for a given reaction, includes one 

incoherent step preceded and followed by coherent production steps 

and elastic scattering. 

The nuclear excitation excludes coherence between ampli-

tudes that originate from incoherent interactions at different 

places inside the nucleus. On the other hand, there can be inter-

ference of different amplitudes that have the incoherent step at 

the same place. This concept was proposed by Gottfried and 

Yennie (17) for incoherent photo-production processes. In the 

case of pO photo-production, there is an interference between 

the two amplitudes represented by the diagrams of fig. 2a (one-step 
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incoherent production) and fig. 2b (coherent pO production 

followed by incoherent scattering) as long as the incoherent 

processes take place on the same nucleon. We generalize this 

concept (3) and assume interference between aIl multi-step 

amplitudes that have the incoherent process on the same nucleon. 

The two-step contribut:i.ons are represented in fig.3. In the' 

case of incoherent production of a diffractive channel, like po 

photo-production or Al, meson production by pions, ~~e multi-step 

contributions are relatively large and, by destructive interference 

with the one-step process, produce an appreciable decrease of the 

incoherent cross section. 

In order to formulate our model, we introduce the 

functions $ (b, z, z , a ) which are eikonal solutions to the a 00 

wave equation 2.2 with the boundary condition 

for 

They represent a kind of transfer matrix. Now the incoherent 

cross section for producing the channel a by the incoming channel 

a. on the nucleus is gi ven by 
~n 

Cl) 
cl u-:"o<,' 0(, 

li. 
(2.13) 

where l (r) is the contribution that is due to reactions a. a 
~n 

with the incoherent step taking place at the point r. l (r) a. a 
~ 
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is proportional to the nuclear density perl at the point r and 

is given by the interference of aIl possible multi-step ampli-

tudes whose incoherent step takes place at the point r. There-

fore we have 

1 
~ ~ (b 1: D() lX. ) f (q ) ~ (~) HO} "2;} 0( If) /2. x L 1",' J)-}~" loe'oe" 1 10.. 

ot' el" ) 

where the function 1jJ a ' (b, z, _a> , a. 
~n 

is the wave function of the 

channel a' at the point r = (b, z) produced coherently by the incident 

channel a .• 
l.n 

The factor f , Il (g) describes the incoherent pro­a a . 

duction (scattering) of the channel a" by the channel a', and ·the 

function 1jJ (b, +a>, z, a" a describes the production (scattering) 

of the channel a after the incoherent process. 

We note that it follows from parity and time reversaI in-

variance of the interaction together with the spherical symmetry of 

the nucleus, that 

Therefore we can write 

A r (~,~) 
(2.14) 

)( 1 L. l'lt'D(I ( b 1 è) - DO) lX~) fl('DC~ (cr ) ~II (b,- 2: J'" 0(1 ) I)() r-
cI...' 0(" 

) 

We have eva1uated the incoherent cross section numerica11y by means 

of eguations 2.13 and 2.14. The functions 1jJ, (b, z, _a>, a) are 
a 
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obtained in the same way as the wave functions $ (r) from the a 

solution of equations 2.7 and 2.6. 

It is to be noted that the channels a' and a" in 

equation 2.14 are intermediate channels. The channels a' 

that appear in the summation are diffractively connected to the 

incoming channel a, , whereas the channels a" are connected' to J.n 

the outgoing channel a . There are two possible cases: 

(a) in- and outgoing channels are diffractively connected 

(example: incoherent pO photo-production). Then the 

channels a' and a" belong .to the same set of 

diffractive channels. 

(b) in- and outgoing channels are not diffractively 

connected (example: ~+ photo-production). Then the 

channels a' and a" belong to two different exclusive 

sets of channels. 

2.5 Approximations and possible improvements. 

In deriving the above formalism for multi-step reactions 

on nuclei, we have made a number of assumptions. We mention 

here the most important ones in order to show the limits within 

which the present formalism can be applied without modification. 

2.5.1. 

Th 'k l 't' (l, 18) h' h ' dt' e el. ona approxJ.ma J.on w J.C J.s use 0 arrJ.ve 
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at equation 2.7 is characterized by the condition U(r) «PT, which 

is easily satisfied at high energies, and by the condition 

q2«p.~ , which is satisfied near the forward direction. The 

eikonal solution of the optical model is equivalent to the Glauber 

multiple scatter.ing description (1) 

2.5.2. 

We assume that all amplitudes are spin and isospin 

independent. There is experimental evidence (10, 20) that this 

is fairly well satisfied for diffractive reactions. 

4f"f> 
~ The range of the two-body interaction, which is represented 

by the two-body profile function r (b) of equation 2.4, enters the 

calculation for coherent reactions in equation 2.3. The effect of 

the range on incoherent reactions is described by C.L. Tang in 

reference (21). since the interaction range is small compared to 

the nuclear radius, this effect is small and can be taken into account 

by using an effective naclear density function, like the one defined 

by equation 5.8. As long as the nuclear density distribution is 

not well known, these questions are more or less academic in nature. 

2.5.4. Nuclear Correlations 

In the model described above we have ignored the nuclear 
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correlations by assuming for the nucleus the product density dis-

tribution given by equation 2.1. The effects of nuclear cor-

relations on the cross sections are described in chapter 5. Here, 

we mention that for coherent reactions, the correlations give rise 

to an effective increase by a few per cent of all the two-body 

amplitudes involved. For in coherent reactions there is, in 

addition, sorne t-dependent correlation contribution to the cross 

section which produces a forward dip in the incoherentcross section. 

For diffractive reactions, however, this dip .is hardly seen because 

of the large forward coherent peak. 

2.5.5. 

In the model descr~bed above, we include any number of 

coherent steps, but only one incoherent step (incoherent production 

or inco~erent scattering). The contribution of multiple incoherent 

steps to the incoherent cross section in the forward direction is 

usually of the order of 10%. In the case of TI+ photo-production, 

discussed in section 4.2.4, we have evaluated the incoherent two-

step contribution. More details for the case of scattering are 

given in references (15) and (19). 

2.5.6. 

The correspondence between the optical model description 

and the Glauber multiple scattering expansion (1) holds only if one 

ignores terrns of the order of liA, which means i t holds for heavy 
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nuclei. The terms of the order liA are evaluated in chapter 5 

for the case of,elastic scattering (see equations 5.17 and 5.33). 

On the other hand, the center of mass constraint (55, 57) of the 

nucleus givesrise to corrections too, which are proportional to liA, 

and can usually be neglected. 

2.6 Somecases where multi-step processes are important. 

Since the two-body production amplitudes at high energies 

ar,e much smaller :- l5y a factor of 0.3 for a rela ti vely strong dif-

fracti ve production reaction - than the elastic ampli tudes, which 

give rise to damping, the contribution of multi-step processes to 

the cross section is" in most cases, comparatively small if not 

negligible. However, there are reactions where the contributions 

to the cross section from one- and two-step processes are of the 

saneorder of magnitude. These are the following: 

2.6.1 • ~~~~~:~~~~~!~~~ (see section 4.2) 

.. The vector meson dominance (VMD) model assumes that the 

photo-production of the final channel goes via a virtual vector 

This is a one-step process. If the reaction 

takes place on a nucleus, there can be real production of a vector 

meson with subsequent production of the final channel, which is a 

two-step process. The VMDmodel implies that one- and two-step 

processes are of similar strength. 

-=:-:-, 
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2.6.2. 

(see section 4.1.2) 

In this case, the one- and two-step processes of 

fig. 3a, b, and c are comparable in strength because the additional 

step is a scattering step which has a strong two-body amplitude. 

2.6.3. 

In this case, mUlti-step processes may be important or 

even dominating. We note the following examples: 

(i) double charge exchange reactions(22) 

(ii) production of diffractive channels with 

higher mass (see section 4.1.1). 

2.7 Infinite and low energy limits. 

2.7.1. 

The energy dependence of the coherent production cross 

section on nuclei(14, 15), ignoring the variation of the two-body 

amplitude, is determined by the longitudinal momentum transfer 

âp~(m2 - m~ ) / 2p • 
out ~n 

In the low energy limit, that is when 

âpoR »1 with R being the nuclear radius, the momentum difference 

between in- and outgoing waves destroys the equal phase relation: 

there is no coherent production. 
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In the infinite energy limit, when 8p·R«1 , the effect 

of longitudinal momentum transfer can be neglected. We have 

maximum coherent production. If we consider one-step production 

processes only, and assume pure imaginary elastic amplitudes, we 

can use the result obtained by K.S. Kolbig and B. Margolis in ref. (15). 

For producing the channel a2 by the incident channel al on a nucleus, 

they find the forward coherènt production amplitude 

~« (0) 
1 1. 

= fD(o( (0) 
1 L 

(2.15) 

with the effective number N(al' a2) defined by 

and 

TCb) (2 .• 17) 

The quantities al and a2 are the total cross sections on a 

nucleon for the channels al and a2. For equal total cross 

sections al = a2 this leads to 

~ 0( (o):: foto( (0) N, (.5f) 
1 L , L 

(2.15a) 

where NI (a) is defined by equation 2.21. 
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2.7.2. 

The incoherent production cross section in the low 

energy limit con tains no contribution from diagrams of the kind of 

fig. 3b to 3e, because the coherent production steps are inhibited 

by longitudinal momentum considerations. Ignoring multiple in-

coherent steps, we quote the result :for one-step incoherent pro-

duction obtained by K.S. Kolbig and B. Margolis in ref. (15). The 

incoherent production cross section can be written in the forro 

d cr- (I) 
«,oC,- ( ) 

-d-Jl-"".~ 1 

We note that for al = a2 

N, ('\77) 

we have 

where NI (a) is defined by equation 2.21. 

In the infinite energy limit the situation is more 

(2.18) 

(2.19) 

complicated. Coherent production steps, followed or preceded 

by incoherent steps (fig. 3b through 3e) 'can contribute to the 

incoherent cross section. We refer to the sections 4.1.2, 

4.2.3, and 4.2.4 as examples. 

We have derived a formula for the infinite energy limit 

of the cross section for incoherent production of a diffractive 
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channel. In this case the diagrams of fig. 3b and c make an 

appreciable contribution to the cross section. If the total cross 

sections 01 and 02 are equal (01= 02 = 0), we have 

where the effective numbers N (0) are defined by 
m 

(2.20) 

(2.21) 

It is interesting to note that we can derive this result both from 

the optical model presented above, and from the multiple scattering 

formalism ( 15) • The multi-step contributions corresponding to 

the diagrams of fig. 3b and c are contained in what the authors of 

reference (15) cal! the sem-coherent cross section. 
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3. UNCERTAINTY OF THE NUCLEAR SHAPE AND 

THE TWO-BODY AMPLITUDES 

3.1 Nuclear parameters. 

24 

For calculations of high energy cross sections on nuclei 

it is important to know the density distribution of the nucleons 

inside the target nucleus. In this work we are mostly interested 

in reactions on m~dium and heavy nuclei. We describe the nuclear 

state by a product wave function with an average density distribution 

p(r) defined in equation 2.1, and which represents "the average over 

aIl individual nucleon wave functions and ignores the correlations 

between nucleons. We show in chapter 5 how the effect of nuclear 

correlations on the cross sections can be evaluated. 

There are a number of methods to deter.mine the nuclear 

density distributions. We mention here the following: 

(a) electron scattering experiments, 

(b) mesonic atoms, 

(c) high energy reactions on nuclei. 

In order to get a consistent picture between different methods of 

measurement, one usually assumes a certain parameterization of the 

density distribution p(r). Throughout this work, aIl numerical 

calculations have been done with the Wood-Saxon density function (23) 

{ e (t - R ) / c 1- 1 r (r)::: fo 1 + (3.1) 



with a normalization constant p • o 

We have the following two free parameters: 

(i) the radius R, 

(H) the parameter c for the surface thickness. 

We have usually ~ken the value c = 0.545 fm from electron 
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scattering experiments (24) For the parame ter R, we make use 

ofits A dependence in the form 

1/3 
R = R A 

'0 

where the value of R is determined from experiments. o 

(3.2) 

In theoretical calculations of cross sections on nuclei, 

we often ignore the effect of nuclear correlations and of the two-

body interaction ,range. For a comparison with experiments we 

therefore should use an effective density distribution where these 

effects are "folded in", as is done in equation 2.3 or 5.8 and 5.35. 

On the other hand, one can analyse the experimental data, ignoring 

the interaction range and correlations, in order to get the effective 

nuclear density distribution directly. Such a determination of the 

radius R is done from the data of coherent pO photo-production (25) 

and yields the values of R listed in Table 1. 

measured nuclei,yields R = (1.12 ± 0.02) fm. o 

3.2 The two-body interaction amplitudes. 

The average,over.all 

There are two kinds of two-body amplitudes that enter 
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our calculations: 

(a) amplitudes that, in principle, can be directly 

measured by two-body reaction experiments, such as 

f (yN + p,ON) ,or f(pN + 1IN) which is determined from 

the time reversed reaction 1IN + pN'. 

(b) amplitudes that cannot be directly measured because 

both, incoming and outgoing channels, are resonances. 

Such are the amplitudes for elastic scattering of 

resonances, like pN + pN, or for a production like 

The amplitudes of the kind (b) can, in principle, be determined 

from reactions on nuclei, as has been done for the imaginary part 

of the elastic scattering amplitude -related to the total cross 

section - of the resonances pO(765) (26, 27), ~(1019) (28), 

Al (1070) (12, 16) and the Q enhancement Q (1300) (29). On the 

other hand, theoretical models for strong interactions may often 

give estimates for the amplitudes of the kind (b). 

There are often additional uncertainties in the two-body 

interactions. We mention the following ones: 

(a) the phase a = Re f (q) 
Im f(q) 

of the ampli tude f (q) , 

(b) the importance of spin flip amplitudes, 

(c) the isospin decomposition. 

However, in many cases these uncertainties can be resolved. 
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3.3 The definition of a closed system of channels. 

In the description of mUlti-step reactions on nuclei, 

as given in equation 2.2, we have a system of channels a thatare 

coupled to one another through the two-body amplitudes f ,(q) • aa 

Besides the incoming and outgoing ones, there are channels that 

play the role of intermediate real states during the interaction 

wi th the nucleus. Then the following question arises: How many 

interroediate channels a do we have to include in the calculation in 

order to get a realistic answer for the cross sec~ion? In principle, 

all diffractively coupled channels can contribute. There are many 

reactions, however, where the contribution from intermediate channels 

is very small (3). In practice, uncertainties about the amplitudes 

and the complexi ty of the calculations Hmi t the number of channels 

to be included in the model. 

There is another interesting question, which is discussed 

in section 4.3: Do only diffractive resonances of the two-body 

interaction contribute to the multi-step reactions in the forro of 

interroediate states, or doe's some "diffractive background" of the 

mass spectrum contribute as weIl? 

1 
j 
i 
.1 

j 
1 
l 

1 
i 
i 

j 
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4. APPLICATIONS TC PARTICULAR REACTIONS 

4.1 The ~-AI-Ag system 

We consider the production of the mesons Al (1070) and 

Ag (1640) on nuclei by incident pions. The mes ons probably have 

spin and parity 1+ and 2 respectively (30) and are therefore ex-

pected to be produced diffractively on nucleons. The Al has 

been seen to be produced coherently on nuclei (12, 31) We assume 

for present purposes that the ~,AI and Ag form a closed system 

with reference to equation 2.2, i.e. that couplingsto other mesons 

are negligible. 

4.1.1. 

One can expand the amplitude F 
ala2 

on the nucleus in terms 

of multi-step amplitudes F(i) where i indicates the number of pro-
ala2 

duction s teps involved. Figure 1 shows diagrams that represent 

one-, two-, and three-step amplitudes. If the coupling between the 

channels is not too strong, the contribution of three or more steps 

is negligible. It is to be noted that the elastic scattering is 

not counted as a step. 

We now look at the high energy limit where the longitudinal 

momentum transfer can be neglected. If we assume that the elastic 
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scattering amplitude is the same for all channels, and if we use 

equations 2.7 and 2.10, we find the following expressions for the 

forwarq amplitude 

r(I)(O)= 
D(.D(L ft;( oC (0) 

1 1.. 

(4.1) 

t. (l.) (0) = _ fK,OC: 1 (0) fX't(1. (0) N (.!!::...') 
0(, KI. f (0) 2. ~ 

0<.'0(.' 

with the effective numbers N (a) defined by equation 2.21. The 
m 

quan ti ty 0" a is related to the total two-body cross section a of 

the channel a and to the phase s . = 

- U; 

Re f (0) CI. 
aa 

Im f (0) aa 

by 

(4.2) 

Values for NI (0') and N2(a) are given in fig. 5 for the case of 

pure imaginary amplitudes. 

The forward amplitude for Al production then is given by 

t (0)::: f (0) r N ( ~') _ f'lr k ( 
0

) fAlA 1 (
0
) ru (.!:'~ 

'Ir A, 11" A, l' 2.. f, ( 0) f ( 0) 1.. 2-
'irA, AJAJ 

where we have neglected higher than two-step contributions. 

Similarly we have for A3 production 

(4.3) 

'E (O):::f (O){N (2:..')- flrA,(O) fA.A,(O) N (Ji)} 
'lrA3 'lrA3 1 2. f (o)f (0) 2.. 2.. 'j(4.4) 

'Ir A3 A, A 1 
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Experimentally (30) it is found that f A(o) 1 f A (o)~ 0.35 
'If 3 'If l 

and f A (0) 1 f (o)~ 0.27 at 8 Gev/c incident pion momentum. 
'If l 'If'lf 

in order to 

have a definite answer. It is reasonable to expect that these 

ratios will be of the same order of magnitude as (f A 1 f ). 
'If l 'If'lf 

If (f A If ), the one-step process in equation 
'If l 'If'lf 

4.3, corresponding to the first term on the right hand side, is 

dominant for Al production, whereas for A3 production both terms 

can be important. 

It is to be noted that at finite energies the two-step 

process for Al production through the A3 is further inhibited by 

longitudinal momentum transfer effects due to the higher mass of 

the A3 • The·same would be true for possible couplings to other 

high mass bosons. It is unlikely that there is any important 

h 1 ° A (12,31) co erent coup ~ng to mass states lower than the l . 

We have a strong indication then that one can, to good 

. approximation, calculate Al production as a one-step process. 

In A3 production we are in a morecomplicated situation. 

The fact that the one-step and two-step processes are comparable 

means that in detailed calculations we must know, or be able to 

determine from the production experiments, (f If )as well as 
AIAg AIAI 

In princip le we should be able to deter-

mine all of these from reactions on nuclei sincewe have the whole 

periodic table to work with as targets. There is, however, the 

real possibility that other bosons contribute as intermediate states. 
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At fini te energies we do not have simple expressions 

like equations 4.3 and 4.4 to work with. We have solved the 

problem numerically as described in chapter 2. Some results 

for the coherent production differential cross sections on Copper 

are shown in figs. 6 and 7. In these calculations aIl two-body 

amplitudes are taken to be pure imaginary. We have taken the A3-

nucleon total cross section equal to the pion-nucleon total cross 

section, (J = 26 mb. 
'IT 

The Al-nucleon total cross section (JAl 

has been taken equal to (J ~12) 
'IT' 

or to 11: (16) 
2 (J 'IT • The A3 

production cross section is given for different values of the 

parameter 

x = f1rÂ.(O) fÂ,A3(O) 

fil" A3 ( 0) f.1t. A\ (0) 
(4.5) 

which determines the relative strength of the one-step and two-' 

step processes. For positive values of X these two processes 

interfere destructively (fig. 7a and 7b). However, negative 

values of X (fig. 7c) would occur if the production amplitude 

f A (0) has opposite phase to f Ai .(0), which may be reasonable if 
'IT 3 'IT l 

one assumes that the A3 production on a nucleon proceeds via two 

pomeron exchange. (Multi-pomeron exchange has been discussed by 

Frautschi and Margolis (32) and by Jacob and Pokorski (32) 

Table 2 lists sorne coherent cross sections for Al and A3 

production on different nuclei and at different energies. It is 
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to be noted that for the values of X considered here, Al production 

differs very little from the value obtained with X = 0 (no coupling 

of Al to A3 ). On the other hand, A3 production is very sensitive 

to the. value of X. For X ~ -1 and at energies around 15 Gev the 

cross section on nuclei divided by the corresponding two-body pro-

duction cross section is about equal for A3 and Al production. 

The two-body cross section is, however, about 10 times weaker for 

A3 production than for Al production. For X ~ l, A3 production 

on the nucleus is very weak in the model studied here. 

4.1.2 

We now discuss the calculation of in coherent production of 

Al and A3 mesons using equations 2.13 and 2.14. It is to be noted 

(see section 2.5.4.)that this method is not expected to yield a very 

accurate in coherent production cross section at the smallest values 

of momentum transfer. However, at very small values of t, coherent 

production is dominant. 

We write the incoherent cross section for the production of 

particle a by incident pions as 

d o;z(I) . 

t;f.il. 
(4.6) 

where Neff is an effective nucleon number for the nucleus under 

consideration. For Al production at low energies we use only 

the term al = pion and ail = a in the sum on the right side of 



33 

equation 2.14, which corresponds to one-step production of a by 

pions. In agreement with equation 2.18 we find Neff = N(cr ,cr
A

), 
'li' l 

the latter being defined by equation 2.16. Keeping a11 terms of 

the sum in equation 2.14 inc1udes the fo11owing processes, which 

contribute to the production of the state a , and which are repre-

sented in fig.3: 

fig. 3a one-step production 

fig. 3b coherent production of a fo11owed by incoherent 

scattering of a (term ail = al = a 

fig. 3c coherent production of « preceded by in coherent 

scattering of the pion (term ail = al = pion) 

fig. 3d and 3e: two-step production, one of which is 

coherent 

in addition:processes with more than one coherent production 

step. 

Some values of N
eff 

are given in Table 3 for different values of 

the parameters of the theory. The figures 6 and 7 show incoherent 

as we11 as coherent production of Al and A3 and the sum of coherent 

and incoherent cross sections for the parameters 1isted. 

It is to be noted that the contribution of the mu1ti-step 

processes of ~ig. 3b through e disappears at lower energies due to 

longitudinal momentum transfer which inhibits the coherent production. 

At high energies we have destructive interference between the one-step 

(fig. 3a) and the mu1ti-step processes. The contributions from the 
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diagrams of fig. 3b and 3c are comparable in strength to the one-

step process because the additional step is elastic scattering 

which has a strong amplitude. As a result, N
eff 

decreases 

appreciably for increasing energy. This is typical for the in-

coherent production of any diffractive channel. For Al production, 

as far as the influence of an intermediate A3 state can be neglected, 

Neff is given in the infinite energy limit by equation 2.20. 

4.1. 3 Discussion 

It can be seen from the above that the simple one-step 

theory whic~ one is familiar with for coherent and incoherent dif-

fractive production can be in serious error. In the case of a 

relatively light and strongly produced boson like the Al meson, the 

one-step theory should be adequate for coherent production, whereas 

for the A3 meson it is likely not. In incoherent production at 

energies of the order of 10 Gev or greater, the simple one-step the ory 

needs corrections due to coherent production preceded or followed by 

incoherent scattering. By going to lower energies this correction 

may become negligible due to longitudinal momentum transfer considera-

tions. However, since the details of the coupling strength of one 

unstable boson to another are unknown, it is difficult to evaluate 

the corrections in detail. To this end experiments on coherent 

and incoherent production of pion (and kaon) resonances will be very 

valuable. With .enough data perhaps one will be able to sort out 

coupling strengths as weIl as uns table parti cIe cross sections. 
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It is to be noted that, since the time when the above 

calculations were completed, an experiment (12) has been done that 

seems to throw new 1ight on the question of the nature of the AI(16). 

Is it a resonance or some kinematical enhancement? This experiment 

yields a very broad mass distribution for the 3~ system produced 

coherently by incident pions on nuclei. The total cross section of 

the 3~ system on a nucleon is of the order of 23 rob at 15 Gev incident 

energy (see fig. 17) which is very similar to the value found for the 

pO meson(26). This is consistent with what one expects for the Al 

being a resonance (uns table particle) if one uses quark model calcu~ 

lations. According to the simple additive quark model (33) one 

expects the total cross sections for the Al and p meson to be the 

same as for the pion. The A3 meson has not been seen to be pro-

duced on nuclei. 

4.2 Photo-reaction~ and vector dominance 

4.2.1. The vector dominance model for reactions on nuclei. 

The vector meson dominance (VMD) mo~el (34) describes the 

strong interactions of photons in terms of the vector mesons pO(765), 

00(784) and ~(l019). It connects the hadronic electro-magnetic 

current with the fields of the vector mesons which have the same 

quantum numbers as the electro-magnetic current, namely j = l, 

P =-1, and C = -1. This connection can be made through the current 

} 

1 



field identi ty 

• EH (Je) 
ti v eX) ;-

where y are the coupling constants, m the masses, and V (x) 
v v Jl 
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(4.8) 

the fields of the vector mesons V = po, w, and ~ • The assumption 

is made that the vector mesons p, w and ~ completely saturate the 

electro-magnetic current. 

From equation 4.8 a relation between interaction ampli-

tudes can be obtained: 

fit;( Cj ) = ~ 
rI I.J) f 

~EM (iV4)-1 
4- lt. 

(4.9) 

where fya [fva ] is the reaction amplitude for an incident photon 

[vector meson VI to produce the channel a on a nucleon. 

the electromagnetic coupling constant gEM 
l 

~ 137 ' usually called a. 

Figure 8b shows the diagram that corresponds to equation 4.9. For 

photon elastic scattering we use the diagram of fig. 8c which gives 

rise to the identity 

( 'èf~ )-' 
'fil 

(4.10) 

where we have assumed that there is no coupling between the vector 

mes ons , which means 
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for V:f Vi (4.11) 

Now we come to photon-induced reactions on nuclei. 

The vector meson channels V = po, w, and ~ are diffractively 

connected to the incoming photon y , and are therefore produced 

coheren tly • Coherent photo-production has been discussed else-

h 
(14, 15) 

w ere • The concept of multi-step photo-reactions on 

nuclei has been developed independently by several authors. Multi-

step contributions are important both for the elastic scattering of 

photons on nuclei (fig. 9) which is related to the photon total cross 

sections on nuclei (2), and for incoherent photo-production (4, 17) 

(fig. 10). In these two cases it turns out that, at high energy, 

the one-step and two-step amplitudes are,of the same order of magni-

tude. For lower energy, however, the coherent production of vector 

mesons is suppressed by the longitudinal momentum transfer, and the 

two-step amplitudes (figs. 9b and lOb) vanish. The one-step ampli-

tude which remains is characterized by (i) a very long mean free 

path of the photon through the nucleus due to the sma11 value of the 

photon-nucleon total cross section 0y of the order of 0.12 rob, and 

(ii) by the two-body reaction amplitude described by the VMD model. 

At very high energy the interference of.bne-step and two-

step amplitudes makes the photon behave like a mixture of vector 

mesons. We have VMD on the nucleus as a whole, and consequently 

the photon nucleon total cross section appears to be of the orde~ of 

25 mb. However, it is to be noted that measured photon cross sections 

are much smaller due to the weak electromagnetic coupling constant gEM 

of the photon. 
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4.2.2. 

The purpose of the following investigation is to test if 

the VMD hypothesis together with the eikonal multi-dhannel formalism 

can explain the experimental data that are available for photo-reactions 

on nuclei. Therefore i t is important to know the values of the 

two-body amplitudes that enter the calculations. In principle, 

there are several methods for determining these; we come back to 

this in the section 4.2.6. We describe here the method we have 

adopted to get the two-body amplitudes used in the calculations of 

sections 4.2.3 through 4.2.5. 

The phase s = Re f (0) 
lm f(o) of the amplitude fff for 

scattering on nucleons is deterndned through the quark model (33) 

relation 

" 
from the meas~ed phase of the pion proton scattering amplitudes (35) • 

There have also been direct measurements(36) of the phase S for pO 

photo-production, which confirm the values we have used. It is 

to be noted that if one accepts equation 4.9, the phase of the pO 

photo-production amplitude fyp(o) is the same' as that of f (0). , pp 

The magnitude of the amplitude f (0) and the p-nucleon pp 

total cross section cr , which is related to it by the optical 
p 

i, 
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theorem, are determined from po production experiments through the 

VMD relation 

d ~( -3> 0) :: .l. ~ (iL )-' 2. ( 2.. ) 
olt if ~ f t:o 16> l{-7i Lf-ii or I+f (4.13) 

which follows from equation 4.9. We have used the value 

~~2 = 0.5, taken from the compilatio~;of S.C.C~ Ting (28), and 

the values dO" 
of dt (YP -+ pOp) from a fit to data of pO photo-

production on hydrogen (37). These values and other parameters 

for the calculations are listed in Tab.le 4. 

It is to be noted that the values for the pO total cross 

section 0" decreases with increasing ~nergy. 
p 

There are further 

indications that 0" is falling with energy: 
p 

(a) 0" is decreasing wi th energy in a similar manner at y . 
(38, 39) energies of several Gev It is to be noted 

that according to VMD 

(È)-I 
Lf-ïr 

(4.14) 

(I:) i The additive quark model (33) gives 

ur = 2- {~+ + ClT-1 
and the ~-nucleon cross sections aIse fall with 

energy at a rate similar te that deduced for 0" here. p 
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The contribution of the vector mes ons w and ~ to the 

reactions discussed here is s~a+l compared to the contribution of 

the pO mesori, mainly 

We have used for the 
y ,2 

d ~ 3 4 an .0 • 4'IT .' 

to be 12 rob (28) 

because their coupling to the photon is weaker. 

, (28) y2-
coupling constants the values ~= 4.69 

The ~-nucleon total cross section cr ~ is, taken 

For the w-nucleon total cross section cr we 
w 

use the same value as for cr. p 
(40) 

We have used the same phase (3 for the amplitudes of a11 

three vector mesons. 

The direct coupling between different vector meson channels 

has been neglected (see equation 4.11). Its possible influence on 

the reactions discussed below is prObably very small. 

Within the VMD model we assume that only the f meson con-

tributes si~ificantly to the 'IT+ photo-production reaction. Then 

the 'IT+ photo-production amplitude has no influence on the ratio 

between cross sections on nuclei and on protons, which is the ratio 

we are interested in. The 'IT+ 1 t 1 . -nuc eon ota cross sect~on 

from reference (41) is listed in Table 4. 

4.2.3. 

~.:. ___ !'!!~~!X. 

Gottfried and Yennie(17) describe incoherent pO production 

in terms of a superposition of one and two-step processes. In the 



( 

( ". 
, ' 

',.-

· 41 

one-step process (fig. 2a) the pO meson is produced incoherently 

on a nucleon and then proceeds, with some damping, to be emitted 

from the nucleus which has been excited. The two-step process 

(fig. 2b) consists of coherent production on one nucleon (no 

nuclear excitation) followed by incoherent scattering (nuclear 

excitation occurs) of the pO meson on another nucleon. 

We arrive at the same result (4) by using equations 2.13 

and 2.14 for a system of particles consisting of the incoming photon 

y and the diffractively produced pO. Because of the smallness of 

the electromagnetic interaction amplitude, we consider only one-step 

processes for coherent production. Equation 2.7 yields the 

wave function fp (r,>, gi ven by 

(4.15) 

The wave numbers for the photon and pOmeson are k and k respec~ 
y p 

tively, and the quantity a' ,defined by equation 4.2, is essentially 
p 

the f -nucleon total cross section a p • 

Ignoring the very small damping of the incoming photon, equations 

2 "13 and 2.14 can be re-wri tten in the forro 

with 
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()O 

do-° -Atr: Sd~1 Y("J~') 
I(b)!:) = dn A f (b)è) e f i.-

" 1 e H".,-",) lo + <Pr (I.J ~) r- (4.16) 

where is the pO photo-production differential cross section 

on a neutron or proton (taken equal). The effective nucleon 

number Neff is a function of A, energy, and Op' • 

At low energies around 2 ~v the one-step process 

dominates. The two-step process is inhibited due to mismatch of 

the photon and pO meson wave numbers because of the mass of the pO 

meson. Ignoring the real part of the amplitude one has then an 

incoherent production cross section 

(4.17) 

with the éffective number N (01 , 02) defined in equation 2.16. 

At very high energy where the mass of the pO is negligible, we find 

d o-Ct) 
-
GIn N (tlf ) Of ) (4.18) 

The photon in this case behaves as though itwere a pO meson. 

Since N (0 
P 

op ) is considerably less than N (0, op the cross 

section has fal1en in going from photon energies of a couple of 

Gev to infinite energy. At intermediate energies the cross 

section decreases monotomically as the calculations of references 

(17) and (42) show. 
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We have calculated(4) the incoherent photo-production of 

pO mesons on different nuclei and for different energies. The 

results are shown in fig. Il along with the available experimental 

d t (42, 43) 
a a • It is to be noted that, in contrast to what sorne 

authors have expected, we find a relatively small variation of the 

effective nucleon number Neff with energy. This is a result of 

the values used for 0 which are relatively small and decreasing 
p 

with energy (see section 4.2.2 and Table 4). We remark that at 

the momentum transfer under consideration, there should be sorne 

correction due to higher order multiple step incoherent processes. 

We come back to this point below. 

We conclude from the comparison of fig. Il that there is 

no clear discrepancy between the experimental data and the theo-

retical predictions. However, the experimental error is sizeable. 

4.2.4. 

The calculations for incoherent ~+ photo-production on 

nuclei (17, 5) are very similar to those for incoherentpOproduction, 

even though the pion is not coupled coherently to the photon and p 

meson. Besides a factor ZiA, where Z is the atomic number of' 

the nucleus, we get the same formulas as above witt op in 

equation 4.16 replaced by the pion-nucleon total cross section o~; 

and ~~o being the ~+ photo-production differential cross section 

on protons. Again, we have a one-step low energy li mi t wi th 
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Neff = z A N (0, 0' 7T ), and an infini te energy Hmi t wi th 

z = - N (0' 
A P 

0' ), where the photon behaves 1ike a pO meson. 
7T 

In this case of 7T+ photo-production we have, in addition, 
, 

determined the contribution to the cross section by processes with 

two incoherent steps (5) Figure 4 shows the corresponding dia-

grams. Appropriate formu1ae for the case of e1astic scattering 

have been derived in the 1iterature (15, 19). In ana1ogy, we 

find that wi th the assumption of equa1 elastic scattering amplitudes 

f = f one has the fo11owing expression for the two-incoherent-
7T7T pp 

step contribution in the Hmi t of high energy, where the incoming 

photon acts like a vector meson: 

d o-(Il) 2 d 0-0 

J.n (~) = A cI J1 C,) 
z. 
~ L 

X ~ CL e t.\. +.Q,II. Cf 
0- CL + a.,z. 

In the low energy limi t we have 

V'ëL x­
V-

{ N (0) rr) - N, (,,)] 
,z. 

a.'z.. z.. 
a. e 4 +Q,'z.. GJ 

q, + a.,l. 

where the effective numbers N (0'1 , 0'2 ) and N (0') are defined in 
m 

equations 2.16 and 2.21. Here 0' el [0'] is the elastic [total] 

cross section of a pion or pO meson on a nucleon, and a [a12 ] is 

the slope of the elastic [production] differential cross section 

of the pion or pO meson respectively. 
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For intermediate energies we evaluate the two-step 

contribution to the cross section approximately by linear inter-

polation between the se two formulae with the parame ter 

x = {Neff - NI (cr)} ;' {N (O,cr ) - NI (cr)} where X = a [ X = l 

corresponds to the infinite [low] energy limite 

Figure 12 shows a comparison of the calculated effective 

number N
eff 

(including two incoherent steps) wi~ TI+ photo-

production measurements (44) The normalization of the calculated 

cross section for every value of momentum transfer is fitted to the 

experimental data. This was necessary because the measured 

effective number Neff(exp) shows a strong t-dependence due to nuclear 

correlation, which is discussed in chapter 5. Thus i t is the varia-

tion of N
eff 

with energy and with nuclear size that we utilize to 

make a comparison between theory and experiment. Figure 12 shows 

reasonable agreement. 

We note that the contribution by processes with two in-

coherent steps is of the order of 15% for lead and 8% for carbon,for 

aIl values of momentumtransfer considered. Again, we are interested 

in the A-dependence of this contribution. 

A similar &mount of two-step contribution is present for in-

coherent pO photo-production. However, the effects of correlations 

introduce cross section changes of the same order of magnitude in the 

opposite direction. In any case, it appears to us that present data 

does not make necessarY their consideration. 
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4.2.5. Photon-nucleus total cross sections 

Total photon-nucleus cross sections have been calculated 

(2) 
by several groups • One calculates the forward photon-

nucleus scattering amplitude using eikonal methods and then invokes 

the optical theorem to get the total cross section. The scatter-

ing amplitude, according to VMD, is the sum of two amplitudes (see 

fig. 9), the diffractive scattering amplitude, corresponding to 

photon scattering on each nucleon, summed over aIl nucleons 

(proportional to nucleon number A) and a two-step regenerative 

amplitude corresponding to photo-production of one of the vector 

mesons p, w or ~ on one nucleon followed by radiative capture on 

another nucleon. The coupling between the vector mesons w· and ~ 

is neglected. The damping of the intermediate vector mes ons by 

the target nucleons c~eates a shadow, which expresses itself by the 

fact that the total cross section cr(y, A) is not proportion al to 

the nucleon number A. 

There is now experimental data(38, 45) confirming the 

presence of this nuclear shadow. It is difficult to fit these 

experimental data if one assumes the pO total cross section cr is p 

larger than 30 mb ( 38) This raises the question of the validity 

of the VMD model in its present form. It was suggested that 

heavier vector mesons, so far unknown, were coupled to the photon in 

the same way as the vector mesons p, w, and ~ • 

We have done calculations (5) for the photon-nucleus total 

cross sections using the parameters discussed in section 4.2.2. The 
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results are shown in fig. 13 (full lines) together with data from 

reference (38). The purpose of these calculations was to show 

that one can get around the assumption of additional heavy vector 

mesons by using realistic values for the two-body amplitudes. As 

in incoherent pO photo-production we note a comparatively weak 

energy dependence of the photon total cross sections. This is 

due to the decrease of cr with energy and to the presence of a non­
p 

zero real part in the p-nucleon forward scattering amplitude. 

4.2.6. 

We conclude frbm the above calculations that VMD toge th er, 

with the eikonal methods used provide a reasonable description of 

the corresponding experiments. The experimental uncertainties are 

still fairly large, and it is not possible to say if any additional 

assumptions are necessazY to descrifie the experimental data. 

we note some apparent difficulties: 

(a) The ratio of photon total cross sections on nuclei 

and nucleons respectively indicate that for heavy 

nuclei the calculated values are too low, as shown in 

fig. 13 (full lines); 

(b) The theoretical result for the effective number'Neff 

of incoherent ~+ photo-production (see fig. 12) is 

However, 

too low for heavy nuclei. This comes out more clearly 

in fig. 14, where the same data is presented in a 
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different way: For every value of momentum 

transfer and for the energies 8 and 16 Gev, the 

experimental and theoretical values for Neff are 

normalised to the corresponding value for carbon; 

(c) The calculations for w+ photo-production predict 

too strong an energy dependence, as already noticed 

by the authors of reference (44); 

(d) There are several methods to determine the pO total 

cross section on nucleons cr , which give slightly 
p 

different results. 

Besides the method described in section '4.2.2, we have determined 

cr from measurements of the photon-nucleon total cross section cr , p y 

using equation 4.14. These values of cr are listed in 
p 

We have taken the same values for the coupling constants 

Table 5. 
2 

YV-:' 
4w 

and the phase S as in' section 4.2.2. . The values of cr are fits 
y 

to the data from references (38) and (39), and are listed in Table 5. 

The contribution of the mesons w and ~ to the photon total cross , 

section is taken to be 16% (38). 

We mention a third method to determine cr which is by. . P 

h o h d' . t 1 . (26, 27) co erent p p oto-pro uct~on exper~men s on nuc e~ • The 

final resu1ts of these experiments have been summarized by D.W.G.S.Leith 

in reference (10). 

The difficu1ties mentioned above disappear if one assumes 

massdependen t amplitudes. Leaving .the VMD identities of equations 

4.9 and 4.10 unchanged, we make the fo1lowing assumptions: 



A. The diffractive amplitude fpp is a function of 

the difference between the masses of the incoming 

and outgoing p-states, that is the amplitude 

f which appears in the diagrams of 
P (m. ), P (m t) 

~n ou 

fig. 8 is a function of (m? - m2 ). 
~n out 

B. The amplitude f(pOp + 7T+n) which appears in the 

VMD description of 7T+ photo-production reaction is 

° a function of.the mass of the virtual p mes on , as 

discussed elsewhere (46, 47) 
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Considering assumption (A), we find that the diffractive amplitude 

appearing in the diagram (b) of fig. 8 (m. <f m t) may be 
ID ou 

different from the amplitude of the diagrams (a) and (c) 

We express this difference by the factor À which 

is defined by the generalization of equation 4.13 

For À = 1 we have the usual VMD, fo~ À ~ 1 we have a mass dependent 

amplitude. 

The value of À can be determined by comparing the values 

of cr obtained from pO photo-production on hydrogen (see. Table 4) p 

and from photon total cross section measurements (see Table 5). 

We find À to be essentially energy independent with a mean value of 

À = 0.9. This means the change in mass from the incoming m = a 
y 



( 

to the outgoing m = 765 MeV decreases the diffractive (pN + pN) 
p 

amplitude by a factor 0.9. 

These assumptions affect the calculations of cross 

sections on nuclei in the following way: 

The ratio of the contributions of the two-step process 

50 

of fig.9b to the one-step process of fig. 9a decreases. 

Since r~e two-step amplitude interferesdestructively with 

the dominatingone-step amplitude, the total cross section 

increases. The result of the calculation is shown in 

fig. 13 (broken lines) and exhibits good agreement with 

the experimental data. We note that we have used the 

slightly larger values of cr 
P 

given in Table 5. 

(b) !~~~~~~~~~ __ !~_~~2~~:~~~~~~~~~: 

Here, in addition, we must know the mass dependence of 

+ the production amplitude f(pOp + ~ n) according to 

assumption (B). We use the value À = vo:s for 
p~ 

the 

ratio f (m 
p~+ p 

=765 MeV)/f (m =0). This value is 
. p~+ p 

obtained (47) + by comparing experiments of n photo-production 

with p production by pions on protons. The resul t of this 

is, as in the case of photon-nucleus total cross section 

calculations, that the two-step amplitude of fig. lOb 

decreases in ratio to the one-step amplitude of fig. lOa. 

Since the two-step amplitude interferes destructively with 

the dominating one-step amplitude, the effective number Neff 
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increases appreciably. The detailed results are 

shown in fig. 14 (broken lines) and are in good agreement 

with the experimental data. 

We note that the calculations of pO production on nuclei 

are not affected by the assumption of mass dependent 

amplitudes. However, there is a slight change in the 

vaiue of cr which is now taken from Table 5. 
p 

We come to the conclusion that the VMD model, together with 

the eikonal methods used, provide a reasonable description of the 

photo-reactions on nuclei described above. However, if we allow 

for mass dependences of the diffractive p-nucleon amplitude f(pN + pN) 

and the production amplitude (f(pOp + 'IT+n) , and if we determine these 

dependences from two-body reactions, we find that the calculations for 

photo-reactions on nuclei (photon-nucleus total cross sections and 

incoherent 'IT+ photo-production) show a better agreement with the 

experimental data. Up to now, the experimental uncertainties are 

too large to clearly-""decide whether the two-body amplitudes are mass 

dependent in the way discussed above. 
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4.3 Neutron-nucleus total cross sections 

Recently there have been measurements of neutron total 

. (48) f d 1 db' h cross sect~ons per orme on Be, C, A , Cu, an P w~t one 

per cent accuracy at average neutron momentaof 8, Il, 14 and 21 Gev/c. 

For aIl elements there is a smooth drop of about 3% between 8 and 21 

Gev/c, very similar to that for the corresponding p-p and n-p total 

cross sections. Normalizing the cross sections to the n-p total 

cross section, no momentum dependence is observed. This is a li tUe 

puzzling for the heavy nuclei, since one expects to be approaching the 

physical situation of a "black target" with a geometrical cross section, 

for a nucleus as heavy as lead. On the other hand, the energy 

dependence under consideration is rather weak and the blackness of the 

heavy nuclei is weakened if one includes the regenerativeamplitude re-

sulting from first diffractively producing nucleon isobars on one 

nucleon, and then having them regenerate a neutron· (see fig. 15). To 

what extent the regeneration contributes is at this point to be 

answered ~rough calculation. pumplin and Ross (49) have suggested 

that reg~nerative effects are quite strong, depleting total cross 

sections of heavy nuc1ei by sorne 20% at energies of the order of 20 

to 30 Gev. The recent data do not bear this out, however, and we 

shall return to a discussion of this question below. 

We have made calculations (6) of the elastic scattering of 

neutrons from nuclei using the coupled channel eikonal approach des-

cribed in chapter 2, and taking into account regeneration of neutrons 

after production of the neutra1 charge state of the isospin 1/2 isobars 

( N* (1400), N* (1520), N* (1688), N* (2190). In our ca1culation we 
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have represented the intermediate nucleon isobars in an average way 

by one N* channel, with the average mass ~* = 1520 Mev. We can 

do this approximation because we find that the N* contribution to 

the total cross section is only of the order of a few per cent. 

The production cross sections for the different isobars, taken from 

reference (50), are added together and give the value f6~the total 

. dO' ( . / 2 N* production cross sect10n dt nN + N*N)t=O= 7.5 rob Gev • The 

two-body parameters for neutron elastic scattering on protons and 

neutrons are listed in Table 6. The total cross section of the 

intermediate isobars on nucleons is taken to be O'N* = 40 rob. We 

have taken the phase S = Re f(O)/Im f(O) to be equal for p-p and n-p 

scattering. We have also assumed the same phase for the diffractive 

production amplitudes. For the nuclear shape we have used the para-

c: meters from reference (25) listed in Table 1. 

The results of our calculations are shown in fig. 16. The 

measurements and calculations agree very weIl. The effects of re-

generation as included here are small as shown in fig. 16 for lead and 

carbon. We note now the uncertainty in nuclear radius, the small but 

non-negligible experimental errors in nucleon-nucleon total cross 

sections and S (which could change our results by ± l to 2%), and 

the neglect of nuclear correlations + l to 2% for short range 

correlations, 0 to 2% for deformation effects). Given alJ:'of this, 

it is not completely clear that the effect of N* is manifest at present 

energies. How~ver, for the heaviest nuclei, as seen in fig. 16 for 

le ad , regeneration contributes in an energy dependent way to improve 

( 
the energy dependence of the calculations when compared with experiment. 
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The authors of reference (49) include virtually the 

whole missing mass spectrum as contributions to the regenerative 

amplitude. The forward differential cross section from this 

spectrum is about half the forward elastic differential cross 

section. The fa ct that the regenerative amplitude is not nearly 

so strong as suggested in reference (49) could be the result of the 

following: 

(a) There are many diffractive amplitudes but with 

different phases and therefore much cancellation. 

(b) The non-resonant background included in the work of 

reference (49) is largely non-diffractive. 

(c) Non-resonant diffraction products spread too much 

(, before travelling a distance of the order of inter-

nucleon spacing to generate a nucleon. 

In connection with the se possibilities, a careful study 

of incoherent scattering of nucleons from,deuteron targets is of 

. t (51) 1nteres • Incoherent regeneration on the deuteron can still 

be expected to be rather strong if the weakness of coherent regenera-

tion results from effects (a) or (b) above. It will be weak if 

effect (c) is responsible for the weakness of coherent regeneration, 

since the two nucleons in the deuteron are relatively far apart (~2 fm). 

At the moment the data are not quite good enough to be definitive. 

We note that a recent experiment (52) indicates that 

point (b) is true. The experiment measures the N* production cross 

section cr in the missing mass reaction TIp + ~M* • The authors para-
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meterize the dependence ofo on the 'incident momentum p by the 

formula -n a ex: p ,and find the value n = 0.7 ± 0.1 for the back-

ground contribution, whereas for N* production as well as for elastic 

scattering they find the value of n to be of the order of 0.2. This 

indicates that the background in the mass spectrum for this experiment 

is mostly non-diffractive. The authors point out the similarity 

between this experiment and proton-proton irielastic scattering. 
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5. THE EFFECT OF NUCLEAR CORRELATIONS 

5.1 Introduction 

In the calculations above we did not consider the effect 

that correlations between individual nucleons of the target nucleus 

can have on the reaction cross section. With the product density 

distribution of equation 2.1 we assume in fact that the nucleons 

inside the nucleus move independently of one another. On the other 

hand, we know that there are corrèlations between nucleons which 

are due to 

(a) the Pauli exclusion principle (Pauli correlations), 

(b) the interaction force between nucleons' (dynamical 

{ corre la ti ons) • 

We dis tin gui sh 

(i) short ~ange correlations that are characterized by 

a distance short compared to the nuclear radius. 

They can be induced by the Pauli exclusion principle and 

by a hard core repulsive interaction between the nucleons; 

(ii) long range correlations that involve distances of the 

order of the nucleus. 

In what foliows, we consider only the short range correlations in the 

nucleus. 

For high energy reactions the contribution of these 

correlations to the cross section is generally small since it is 



57 

a contribution from a multi~step reaction, which takes place 

between the incoming particle and the nucleons that exhibit the 

correlation. 

The effect of correlations to coherent amplitudes is 

most easily described(l, 7, 53) by an effective increase of the 

two-body cross sections of the order of a few % •. The effect of 

correlations on the in coherent reactions is characterized by a for-

ward dip in the t-dependence of the differential cross section, the 

detailed form of which depends (7) on the form of the correlations 

as well as on the damping of the reacting particles inside the nucleus. 

There are several methods of determining the nuclear cor-

relations. The most important ones are the following: 

(a) theoretical calculations which assume a certain forro 

for the interaction force between the nucleons (see, 

for example, reference (53) ); 

(b) medium energy ~eactio~s (see, for example, reference (54»; 

(c) high energy reaction experiments (see, for example, 

references (55) and (21) ). 

In order to have a consistent picture, these different descriptions 

should agree with one another. Unfortunately, the uncertainties 

are large: On the one hand, the form of the nuclear interaction is 

not very well known. On the other hand, in experiments, it is. 

difficult to clearly separate the effect of correlations from other 

possible influences. 
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In the following we present a description (7) of high 

energy reactions of particles with nuclei, with special emphasis 

on the effect of correlations on cross sections. At this point 

it is important that we also consider the effect of the range of 

the two-body interaction, since it is not much smaller than the 

rang~ of the correlations. Because of the smallness of the cor-

relation corrections we now keep terms of the order of lIA which 

are given by the Glauber multiple scattering model (1), and which 

we have neglected in the optical model calculations above. 

The following calculations are presented for the case of 

particle scattering of nuclei. We note that similar formulae hold 

for the case of diffractive and non-diffractive production reactions. 

5.2 The definition of the correlation function 

We restrict ourselves in the following to the discussion 

of two-body correlations, since the influence on high energy cross 

sections of correlations between three or more nucleons is expected 

to be very small indeed. We define the two-body correlation 

function g(rl , r2 ) of the true nuclear ground state wave function 

I\J 
u

I 
through the equation 

. (5.1) 



/ 

of - . 

~ 
'~. 

59 

with the single partic1e density distribution 

(5.2) 

'ù 
From the normalisation of uI(rl , ••• , rA) and p(r) fo11ow 

the identi ties 

and (5.3) 

for a11 r 2 ' 

which will be usefu1 be1ow. From now on we consider for the 

nuc1ear ground state the wave function uI given by 

which reproduces the same single partic1e density p(r) and cor-

o 0 'ù 
relation function g(rl , r2 ) as does the true wave funct~on uI • 

The typica1 forro of the correlation function g(rl , r2 

can be studied in simp1ified mode1s, such as a simple Fermi gas 

mode1 (1) or in a mode1 with a repu1sive core interaction between 

nuc1eons (53) • In both cases the correlation function, 

g(rl , r2 ) = g(rl - r2 ), is trans1ationa1 invariant. One has 
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g(O) = -l, so that the wave function vanishes as the nucleons come 

together, and g(r) approaches zero for distances r large compared 

to the typical range of the correlation, which is of the order of 

one ferInÏ. 

For the follo~ing calculations it is important to note 

that the value of the correlation range lies between the nuclear 

radius and the two-body interaction range, and is close to the latter. 

5.3 Elastic Scattering 

Within the Glauber multiple scattering theory (1) the 

scattering amplitude of a particle on a nucleus near the forward 

direction is given by 

(5.5) 

where II) and IF) designate the initial and final state of the 

nucleus, q is the momentum transfer and ~(b) is the two-body profile 

function defined in equation 2.4. For elastic scattering the 

nucleus remains in i ts ground state 1 l > and we have 
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In order to evaluate the above formula we introduce for 

convenience the quantities 

and (5.7) 

'1 (b) ::: S d\ J3Jï. r(r;) y(rz.) ~ Cr; ) r,.) 

)( r ( h - s,) r ( b - SL ) 

where s represents the perpendicular component of the space vector 

-+ -+ r = (s, z). 

The quantity t(b) is related to the nuclear profile function 

T(b), defined in equation 2.17, in the following way: We define an 

effective density function 

(5.8) 

which is a folding of the density function p(r) with the normalized 

two-body interaction ik 
271'f(o) r(s). In the limi t of zero range 

interaction we have PR(r) = p(r). Thus the effective profile 

function 

1; (b) (5.9) 

includes the effect of the two-body interaction range, and we can write 
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(5.10) 

with the quantity o' = 4~7(O) = 0(1 - iB) . 1k introduced in 

equation 4.2 .. ~e note that the value of t(b) is usually of the 

order 'of lIA. 

For the evaluation of the 'quantity q(b) we' malte use of the 

followinq approximations: 

CA) We as~ume a qaussian form for the two-body' 

interaction amplitude 

which yields with equation 2.4 

f(o) 
::- e 

(B) We assume th~t"the correlation function g(rl , 1'2) 

is translational invariant, i.e. 

. , 
(C) We assume the two-body interaction ranqe to he, short 

compared to the nuclear density structure. 

(0) We assume the correlation ranqe t~ be short compared 

~o the nuclear density structure. 

In order to evaluate q(b) qiven by equation 5.7 we introduce new 

coordinates (S, Z) and (s, z) ,by 

1 • . tf 1 

t:. 
,'. 

1 1 

~: . 

j. 

, ' 

i ,~ 
l " 

l, 

! 
, " \" 

, , 
, ' ' 

! .', :'; :',' 
l, 

i' 1 l,:; ::: 

~' 

, ~'" 
i.' 

" , 

, . · 
l" :,', 

:-n, f. 

" 
' •• ' • t'" 

',:, 'n','.:,:,.1 ,~:;_ . 
" \-

l'" ;-;' . ';" 

f ,. 

. ',-

,: 

~'I · 
~ .. 
· " 

i 
( 

.. 
l' 



63 

" 1 
Z = '2 (zl + z2) 

and 

Using the approximations (A), (B), and (C) we find 

52-

"r(b+Î'Jlrt) f(h-~)~-~)~(SJè) e-l(-Q. 

Since for the d2s and dz integration the variables s/2 and z/2 

enter the two factors p(b + s/2, Z + z/2) P(b - s/2, Z - z/2) with 

opposite sign, the first order variation of the product cancels. 

c_ Therefore we can use (D) to good approximation, and write 

Ci) (b):;2:... J 2 ,2. { 

, '''Tf a. 
(5.11) 

We define the correlation length ~ by 

(5.12) 

and the quan ti ty Q (b) by 

60 

Q Ch) = Al. S J~ f~(hJ è) (5.13) 

-00 



{ 
........ -

( 

Then equation 5.11 can be written as 

~~) 
j A' 

Now we go back to evaluate the equation 5.6 for the 

elastic amplitude Fel(q). Using the density distribution of 

equation 5.4 and the identities of equations 5.3 we find that 

< rIft f 1 - r( b - s.)} 1 r> 
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(5.14) 

= (l~t(ld)A +tA(A-I)(I-t(,))Â~2.i(h) 

~ (J - t (b) + i A 1 (1) )A 

We have used here the following approximation: 

(E) Compared to terms of the order of At(b) we neglect 

terms of the order of A3t(b)q(b), A4q2(b), and higher 

order terms involving q(b). This is justified 

because a numerical evaluation shows that At(b) is 

of the order of one and Aq(b) «t(b). 

With equations 5.10 and 5.14 we find that 

(5.15 ) 

where 

1 

-CI ~. QCh) (5.16) 
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is the effective profile function of the nucleus that includes the 

effects of the two-body interaction range as weIl as the nuclear 

correlations. Using equation 5.15 and the expansion 

-)( 
= e (1 

1 which neglects some terms of the order of AT and higher, we find 

for the elastic scattering amplitude given in equation 5.6 the 

expression 

f c rr!' N C( ~L (~) :: f (0 ) l AI (i j 0 ) T ) + A 2. j j 
o-! -2.. )} (5.17) 

Here we have used the effective nucleon numbers NC which are 

defined by 

1 

C. trf 2- S,l~ e~,L {I -~T:(~)1 z. Co 

N ejj 0)2:) - 'V' e 

N~ (, j cr ) ~ S dl.b 
~, ~ (5.18) 

= m! 
e 

)( [Q- -r:(")J~ - V- Tc.. (1,) 
e 

Ne note that these effective numbers are generally complex numbers 

that take into account the two-body interaction range and the nuclear 

correlations. 

Ne see that the effect of the interaction range and the 

nuclear correlations on the elastic scattering amplitude of equation 

5.17 is shown by the replacement of the nuclear profile function T(b) 

of equation 2.17 by the effective profile function T (b) defined by 
c 
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the equations 5.8, 5.9 and 5.16. For a repulsive correlation, such 

as the Pauli correlation, the correlation length ~ is negative and 

T (b) is larger than T(b). c This means the probability for the in-

coming particle to have a reaction with sorne target nucleon is in-

creased by the presence of nuclear correlations. 

Another physical interpretation of this effect is to point 

out that the repulsive correlations decrease the probability that one 

nucleon is very close to another nucleon. Thus the screening of 

the nucleons by one another diminishes, and the probability for a re-

action with the incident particle increases. 

5.4 Summed cross section for elastic and inelastic scattering. 

In high energy reaction experiments with nuclear targets 

it is often not possible to observe the final state of the nucleus. 

In this case one uses the closure relation 

1 (5.19) 

all states IF> 

and assumes that the experiment determines the sum of reaction 

cross sections for all possib~e final nuclear states. . For high 

energy reactions the closure approximation is good because th~ 

excitation energy of the final nuclear state is small compared to 

the energy of the incident particle. 
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For high energy scattering of particles on nuclei we have 

the summed cross section 

cl VS, ( ) = I­
dJl i If) 

(5.20) 

where the sununation runs over aIl possible final nuclear states IF> • 

We use equations 5.5 and 5.19 and get 

~ , (b b') 
r.('V$, ( ):L !fl-b Jt", et.., - { , 
d.n. ~ If 'lrl. 

A -< ! 1 I!. {, - r ( b - 5,) } 1 l > 
- (r 1 ft {l - r' (~' -Si) 1 J t> (5.21) 

+ <l:I ft f( 1- r(b-S;»)( 1- rV-';»)}1I > 1 
The first terms in the bracket are the same as already evaluated 

for the elastic scattering amplitude (see equation 5.15). For 

the evaluation of the last term in the bracket we again use the 

densi ty fUnction' 'or equation 5.4 and the identi ties 5.3. After 

sorne straightforward calculations where we use the approximation (E), 

described in the previous section, and the expansion 

(5.22) 
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which neglects sorne terms of the order of h and higher, we can 

write the summed scattering cross section in the form 

where the index c of t (b) indicates that the correlation effect 
c 

is included through 

with t(b) and q(b) defined in the equations at 5.7. 

The quantities t(b, b l ), q(b, bl), and ~(b, b l ) are defined by 

(5.23) 

(5.24) 

(5.25) 



( 

9(b)b'):: Jet!'" J3
rl. r(tj) f(!'i) ~("'IJt"L) 1< 

{ '2. r(t-$.) r*(~'-s,) [r(l,-<.) + rt(~' - s.) J 
- nL-s,) r~(.·-s.) f(L-s.)r*(4'-s.) 1 

da 
As expected, the summed scattering cross section dQsc 
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(5.26) 

(5.27) 

is the sum of the elastic scattering cross section IFel(g) 12 and 

contributions from reactions where the final nuclear state is 

excited. The first and higher order terms in the expansion of 

the factor (l-t(b,b ') + Î q (b,b ' ) ) A-lof equation 5.23 corres­

pond to the contribution to the cross section by multiple-incoherent 

. (15 19) 
-step react~ons '. • From now on we restrict ourselves to the 

contribution from reactions with, at most, one incoherent step and 

therefore neglect this factor. 

The contribution tq the cross section from the first term 

in the bracket of equation 5.23 will be called the semi-coherent 

contribution and can be written in the form 

(5.28) 
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with the effective number NÎ defined in equation 5.18. The 

characteristics of the sem-coherent contribution is 

(i) its t-dependence which, like that of the elastic 

cross section, is determined by the shape of the nucleus, 

(H) 

and 

1 the fact that it is negative and about a factor A, 

smaller than the elastic cross section. 

The second term in the bracket of equation 5.23 gives rise 

to the incoherent cross section which is characterized by'a t-

dependence equal to that of the two-body differential cross section. 

We find that 

(5.29) 

with 

Neff ( 0-, S ) == S ,f k 
-0- T Cb) 

e C 

('rU,) - Lf- J \T Q Cb).) 
(5.30) 

We note that cr is the non-complex total cross section of the two-

body interaction. In order to derive the term -4; cr ,Q(b) in 

equation 5.30 we have used the short range approximation (C) and 

have assumed that 

(F) the two-body interaction range is short compared to 

the typical correlation distance. 
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The last term in the bracket of equation 5.23 gives 

rise to a contribution, which we call the correlation cross section, 

with a t-dependence typic~l of the correlation function. We find 

that 

GC,) IC 

Q Cb) e - {7"" 1: Cb) 
(5.31) 

where 

(5.32) 

is the three-dimensional Fourier transform of the correlation 

function g(r). We obtain this result by using the identity (15) 

together with the approximations (B) and (D) discussed in the pre-

vious section. We note that equation 5.31 holds for values of q 

large compared to l/R, R being the nuclear radius. For the region 

of smaller values of q, where elastic scattering is dominant, long 

range correlations, which we have neglected in our calculations, 

become important. 

The summed scattering cross section then is given by 

d C\7Se (q ) = 1 F (Di) 12. + d ~"'; cl ot,., + J \770
"" 

01..0. 1 el, dn. + JQ clJ2 --
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dOSe: ( ) = l f( 0) 12. x: 

d Jl ' 
(5.33) 

{ 1 N<-C'1i 0, f) 1'L+iRe[NC
( 'i 0) ~) AI! ('ij ~)} 

-* 1 N,C ( (Ij f ) J 2 1 
+ }f',) /2. Neff (VJ3) [1 + ~ (v-J G ('1) ] 

Here we have used the equations 5.23, 5.17, 5.28, 5.29 and 5.31 

d h d d t d t , ,1 , () Th an ave roppe sorne erms qua ra ~c ~n A or ~n gr. e 

c effective numbers N and Neff are defined by the equations 5.18 

and 5.30, and G(q) is the Fourier transform of the correlation 

function g(r). We have introduced the parame ter 

(5.34) 

whose value depends on the shape of the nucleus.' For the Fermi 

A 
gas model we have n (cr) = P = --V-o':"l-ume- For more realistic density 

distributions, such as square well or Wood-Saxon densities, we find 

that n(cr) is smaller and decreases with increasing two-body cross 

section cr. This cr-dependence is more pronounced for heavier nuclei. 

The smaller value of n (cr) can be explained by the fact that a large 

portion of the cross section is due to reactions that take place at 

the surface of the nucleus where the nuclear density is smaller. 

Values of n(cr) are listed in Table 7 • 

. At this point it is important to note that, for the above 

calculations, we have used the assumption (B) that the correlation 
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function g(rl , r2) is trans1ationa1 invariant, which imp1ies 

that g(r), with r = rl-r2 , is the SaIne in the center and at the 

surface of the nucleus a1though the nuc1ear density is quite 

different. This assumption is difficu1t to justify, a1though it 

cou1d be tested for Pauli correlations by means of ca1cu1ations 

with anti-symmetrized wave functions (56) 

5.5 Discussion 

Nuc1ear correlations affect the cross sections for high 

energy reactions in the fo11owing two ways: 

(a) The strength of the coherent and sem-coherent 

scattering amplitude as we11 as the damping for 

any other reaction is affected by the introduction 

of the effective nuc1ear profile function T (b) of . c 

equation 5.16, which inc1udes the contribption from 

nuc1ear correlations • This contribution is pro-

. portion al to the two-body total cross section cr 

and the nuc1ear correlation 1ength ~ defined in 

equa tion 5.12. 

(b) There isa direct contribution to the summed cross 

section, name1y the correlation cross section of 

equation 5.31. It produces a forward dip in the 

ine1astic cross section, and is characterized by a 

t-dependence given by the Fourier transform of the 

correlation function g(r). 

'1 
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The above calculations are done for the case of scattering, where 

the incident and outgoing high energy particles are the same. 

Similar results are obtained for the case of production reactions. 

For diffractive production reactions, such as n + Al and y + pO, 

as for scattering, the coherent forward peak of the differential 

cross section overshadows the forward dip due to the correlation 

cross section. However, for non-diffractive reactions, such as 

charge exchange reactions and charged pion photo-production, the 

coherent cross section is not present. 

The e~eriment of n+ photo-production of reference (44) 

shows a forward dip in the differential cross section. This dip 

reflects the repulsive correlation of nucleons inside the target 

nucleus due to some repulsive core interaction as weIl as to the 

Pauli exclusion principle. Thus, the n+ photo-production data 

gives information about the correlation function g(r) (21). 

We have used different estimates(2l, 53, 54) for g(r) to 

evaluate the correlation length ; , defined in equation 5.12. It is 

to be noted that the two-body interaction range diminishes the effect 

of the correlations. In particular, the value of ; decreases 

roughly by a factor of 0.5 compared to the value for the zero range 

-2 interaction if we use the value a = 8 Gev for the slope of the two-

body differential cross section. We find ; to be of the order of 

-0.3 fm. 

The above calculations for the effects of nuclear corre la-

tions on high energy cross sections are valid for scattering and 

production reactions as long as the effect of longitudinal momentum 
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t~sfer can be neglected. Longitudinal momentum transfer effects 

have been described by the multi-channel optical model in chapter 2. 

We now give a prescription for how the effect of nuclear correlations, 

apart from the correlation cross section of equation 5.31, can be 

taken into account in optical model calculations. 

One way of doing this is to replace the nuclear density 

function p(b,z) in equation 2.3 or 2.5 by the effective density 

(5.35) 

in analogy with the replacement of TR(b) by Tc(b) in the calculation 

of coherent amplitudes according to equation 5.16. 

On the other hand, one can introduce effective two-body 

a.mi?litudes. We neglect the small change of the t-dependence of 

the differential cross section introduced by the nuclear correlations 

thrOU9hequation 5.35 and by the two-body interaction range through 

equation 2.3, which can be accounted for by a measurement of an 

effective nuclear shape (see section 3.1 and reference (25». We 

approximate the elastic scattering amplitude F l(~) of equation 5.17 
a' e 

by Fel (q) = f(o) N
C 

(Cf; 0'2 ,,) and define the effective two-

body amplitude fE(D) and effective cross section ~ ='Vf (o)/f(o) 
E E 

such that 
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cr' E c cr' 
where N(O, 2 ), defined by equation 2.16, is equal to N (Oi 0, 2 ) 

in the absence of correlations. The effective two-body scattering 

amplitude, defined in this way, can be used in the optical model cal-

culations i.f nuclear correlations are to be taken into account. 

Using the equations 5.36, 5.18 and 5.16 we find that the 

effective two-body total cross section crE is given to good approxima­

tion by the A-dependent expression 

(5.37) 

wi th the quanti ties .~ and n (cr) defined in equations 5.12 and 5.34. 

Sorne values for crE are listed in Table 8. The differences between 

crE and cr are of the order of 5 to 10 per cent for ~ = - 0.3 fm, and 

they can perhaps be detected by careful experiments on nuclei using 

particles whose scattering amplitudes on nucleons are well determined. 
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6. CONCLUSIONS 

The foregoing calculations show how high energy multi-

step reactions on nuclei can be described with a multi-channel 

optical model formalism. We distinguish coherent and incoherent 

production steps. The damping of the high energy particles inside 

the nucleus is taken into account. Generally we find destructive 

interference between the one,-step and two-step amplitudes. 

Accordingly, the cross section for incoherent production of diffrac-

tive channels at very high energy, such as Al production by pions and 

pO photo~production, is expected to be about half the value of what 

is predicted by simple one-step calcu,lations. , This is indicated by 

pO photo-production experiments(42). In the case of Al production 

by pions the non-diffracti ve background is strong and makes the experi-

mental analysis of the incoherent cross section more difficult. 

In the case of coherent production of higher mass resonances, 

such as Ag meson production by pions, it is conceivable that two-step 

processes contribute considerably to the cross section, with lower 

mass resonances as intermediate states. Detailed calculations are 

presented for the ~-AI-Ag system for different assumptions about the 

two-body amplitudes. 

Within the framework of vector dominance, detailed calcula-

tions of photo-reactions have been presented in order to compare the 

available experimental data with the theoretical results. Incoherent 

( 
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pO photo-production, incoherent rr+ photo-production, and photon-

nucleus total cross section experiments have been compared simul-

taneously in order to test the consistency of the theory. The 

parameters for the calculations are taken from experiment as well. 

There have been suggestions for modifications of the 

vector dominance model; for example, further heavy vector mesons 

could be included in order to explain the data of photon reactions 

on nuclei. Within the experimental uncertainties, we have found 

reasonable agreement between the'experiments and our calculations, 

which are based on the simple vector dominance model. If we 

modify the model so as to have amplitudes that depend on the masses 

of incoming and outgoing particles, we,find that the agreement with 

experiment further improves. 

We have discussed the importance of contributions to the 

neutron-nucleus total cross sections by intermediate nucleon isobars 

N* via a two-step process. The comparison with experiment shows 

that this contribution is very small, from which it follows that 

only resonances contribute as intermediate states, but not the back-

ground of the mass distribution. This can be understood from a 

recent experiment(52) that indicates that this background is pro-

duced mostly non-diffractively, from which it follows that the back-

, 1 
grouhd cannot contribute to the coherent two-step process. 

The effect of nuclear correlations on high energy reactions 

has been examined. We have discussed how these effects can be in-

corporated into an optical model description by using an effective 

two-body amplitude. We find that the effect of correlations is 
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smaller than has been proposed by other authors (53). The 

reason for this is that we take the surface of the nucleus into 

.account in a different way, and that we do not neglect the two­

body interaction range which is not much smaller than the nuclear 

correlation distance. 
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TABLE 1 

The nuclear radius parameter R for a Wood-Saxon density 

distr-ibution is given for different nuclei. The values 

from"ref.(25) are Obtained from a fit to the experimental 

data of coherent pO photo-production. The nuclear 

surface parame ter is fixed to the value c = 0.545 fm. 

, 
Element Atomc weight A R in fm 

Be 9.0 2.35 ± 0.26 

C 12.0 2.50 ± 0.23 

Al 27.0 3.37 ± 0.16 

Cu 63.5 4.55 ± 0.11 

Ag 107.9 5.35 ± 0.09 

Pb 207.2 6.82 ± 0.20 

( 
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TABLE 2 

Integrated coherent meson production cross section 

nor.ma1ized to the forward differentia1 production cross 

(c) /dao 
section on protons: a / dt (0) in GeV2 for the 

parameters as listed for fig. 6 • 

A=19 A=208 A= 64 
co 

16GeV 16GeV energy 16GeV 10GeV 5GeV 

a r- ,1.4 0.94 3.4 2.5 ' 2.2 
'li" 

R= 0.7 0.96 3.4 2~5 2.2 1.7 0.40 

R= -0.7 1.03 3.7 3.0 2.4 

1 a ,= ~ 
Al 2 'li" 

R= 1.4 1.32 7.4 4.4 3.8 

a = a r- 1.4 0.19 0.68 0.49 0.22 
Al 'li" 

'R = 0.7 0.36 0.40 1.23 0.42 0.095 0.005, 

R= -0.7 0.96 2.80 5.0 2.13 

1 
aAt~'lI" R= 1.4 0.33 0.55' 1.01 0.35 

3GeV 

0.021 

0,.00002 

The values of a(c) are obtained by integrating (da(c) /dt) (t) 

from t = t. up to t ~ -0.1 GeV2 for A = 19 and up to 
mn 

t ~ -0.05 GeV2 for A = 64 and A = 208. 
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TABLE 3 

Effective number N
eff 

for incoherent meson production 

for the parameters as listed for fig. 6. 

A=19 A=208 A = 64 

16GeV 16GeV co 

enerqy 16GeV 10GeV 5GeV 

li.5 
! ... 

'one-step' 7.0 16.0 Il.5 11.5 11.5 

Multi-step: 

pion incoh. scat. 6.8 15.6 11.0 11.1 11.2 11.5 
. .. . . 

cr = 
cr. r = 

1.4 3.3 8.8 4.0 5.1 
Al 

Al R= 0.7 3.3 8.9 4.2 5.2 6.6 10.2 
prod. 

R= -0.7 3.6 9.6 4.4 5.6 

1 
crAI= ~'If R= 1.4 4.6 12.4 5.5 7.2 

cr = 

cr r= 1.4 2.8 8.2 4.8 5.2 
Al 'If 

Al R= 0.7 3.4 8.5 3.9 5.8 7.6 10.8 
prod. 

R = -0.7 7.0 23. 6.3 13.6 

1 
crAt ~'If R= 1.4 3.4 9.4 4.7 6.1 

3GeV 

11.5 

11.5 

11.5 

11.5 

11.5 

16.7 

11.8 

11.8 

11.9 

11.9 
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TABLE 4 

Photo-nucleon cross sections 

The parameters for the two-body amplitudes of 

photon-reactions are listed as functions of the 

incident photon energy (see section 4.2.2.) 

incident energy E in GeV 3 5 8 16 
Y 

dO" in llb/GeV2 _ (yp -+ pOp) _ 152 124 113 106 dt t=o 

(fit to experimental data) 

: 

B = Ref -.26 -.22 -.185 -.135 --lm f 

0" in mb determined from p 
dO" 

the values of dt (yp -+ pOp ) 27.6 25.2 24.2 23.6 
2 

with VMD and 1.:. = 0.5 
4'1T-

0" in 
'1T+ 

mb 25. 24. 

( 

.' 



( 

TABLE 5 

The two-body total cross section 0' 
P 

deter.mine~ from the photon-nucleon total 

cross section 0' (see section 4.2.6). 
y 

incident energy E in GeV 5 8 
Y 

0' in ].lb 124 117 
Y 

(fit to experimental data) 

0' in rob 28.5 26.8 
P 

90 

16 

111 

25.5 
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\. TABLE 6 

Neutron-nucleon cross sections 

The parameters for the elastic two-body amplitudes 

are listed as functions of the incident neutron 

momentum. 

Nucleon lab. 
S 

Re f(o) cr cr = momentum pp pp Im f(o) (GeV/c) (rob) (rob) 

.. 

--
J 

\ . 5 41.0 40.5 -0.35 

8 40.3 39.7 -0.33 

14 39.4 38.7 -0.27 

21 39.0 38.5 -0.20 

cr and S from ref. (58) pp 

cr from refs. (59) and-C·(0). np 

( 



92 

TABLE 7 

_3 
The quantity 10 n(cr) in fm for a Wood-Saxon 

1/3 
nuc1ear density with R = 1.14 A fm and c = 0.545 fm, 

as obtained from equation 5.34. 

~ cr in mb 
208 108 64 27 20 

5 1.07 .98 .89 .72 .65 

7.5 1.02 .94 .86 .70 .64 

10 .• 96 .. 89 .82 .68 .62 

12.5 .90 .85 .79 .65 .60 
{ 

15 .84 .80 .75 .63 .58 

20 .71 .71 .68 .59 .55 

25 .60 .61 .60 .54 .51 

30 .51 .53 .54 .50 .47 

35 .43 .46 .47 .46 .44 

40 . 37 .40 .42 .42 .41· . 

50 .29 .31 .34 .35 .35 

( 
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TABLE 8 

The effective two-body total cross section crE 

as a function of cr for; = -0.3 fm and different 

values of A (See equation 5.37). 

A= 
208 64 27 

cr in.mb 

10 10.3 10.3 10.2 

20 21.2 21.0 20.8 

30 33.3 32.0 31.'7 

40 43.4 43.2 42.8 

50 54.5 54.5 54.1 



Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 
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FIGURE CAPTIONS 

One-step and multi-step contributions to the coherent 

production amplitude F on a nucleus. 
ctlct2 

One-step and two-step processes for incoherent pO 

photo-production. 

One-step and two-step processes for incoherent production 

reactions. 

Processes with two in coherent steps that contribute to 

the ~+ photo-production cross section. 

The effective numbers Nl(a/2) and N2(a/2) as functions 

of A for the nuclear parameters listed for figure 6. 

Differential cross section for Al meson production by 
64 

incident pions on CU normal~zed to the cross section 

on protons: (a) a
A1 

= a 
~; ; x = 0.7 

The 

(b) a
A1 

l x = 1.4 = -a 2 ~ 

parameters for the calculation are 

a = a = 26 mb 
~ Ag 

f3 = 0 for all amplitudes 

da 
dt ('1lp + AIP) t=0 = 2.5 mb/Gev2 

da . __ ? 
dt ('1lp + Agp) t=O = 0.3 mb/Gev-

the following: 



Figure 7 

Figure 8 

Figure 9 

( 

95 

The nuclear density is taken to be a Wood-Saxon 

distribution with R = 1.14 Al/s fm and C = 0.545 fm. 

For the calculation of the incoherent cross section 

-2 
an average value a = 7.5 Gev is assumed for the 

slopes 'of aIl differential cross sections on protons. 

DifferentiaI cross section for AS meson production by 

incident pions on 64CU normalized to the cross section 

on protons for the paramete~s listed for figure 6 and 

= 26 mb 

(a) X = 1. 4 

(b) X = 0.7 

(c) X = -0.7 

Vector meson dominance diagrams for the diffractive 

two-body amplitudes of a photon y, and a vector meson 

V on a nucleon N: 

(a) vector meson elastic scattering 

(b) vector meson photo-product~on 

(c) photon elastic scattering 

Diagrams for photon forward elastic scattering on nuclei: 

(a) one-step elastic scattering of the photon 

on a nucleon 

(b) two-step process with vector meson production 

and photon regeneration 



Figure 10 

Figure 11 

Figure 12 

Figure 13 
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Diagrams for incoherent photo-production of the 

channel a on nuclei: 

(a) one-step process 

(b) two-step process with intermediate vector meson V. 

Incoherent pO photo-production: 

Experimental and theoreticalvalùesof Neff are given for 

several energies as a function of A • The calculations 

. are done for a Wood-Saxon nuclear density distribution 

with the parameters R = 1.12 A l / 3 fm and C = 0.545 fm. 

The effect of a change in the nuclear radius from 

R = 1.12 Al / 3 fm to R = 1.18 Al/3 fm is shown for A = 208 

at E = 5 Gev. y 

+ Incoherent ~ photo-production: 

The A dependence of Neff for four dif'ferent, momentum' 

transfers. The normalization of the theoretical curVes 

is fitted to the experimental data, for each value of 

momentum transfer. The nuclear parameters are listed 

for figure 11. The experimental errors are statistical 

only. 

Photon-nucleus total cross sections: 

Data from reference (38) is compared to the calculations 

of section 4.2.5. The nuclear parameters are listed for 

figure 11. The effect of a change in the nuclear radius 

from R = 1.12 Al / 3 fm to R = 1.18 Al/3 fm is shown for 

A = 208 at E = 8 Gev. y 



Figure 14 

Figure 15 

Figure 16 

( 

97 

Full lines: two-body amplitudes from section 4.2.2. 

broken lines: mass dependent two-body amplitudes (see 

section 4.2.6). 

Incoherent ~+ photo-production: 

The values of N
eff 

are given for different nuclei 

normalized to the value for carbon. 

The experimental data and the full line calculations are 

the same as in figure 12 (two-body amplitudes from 

section 4.2.2.) 

The broken lines are calculations with mass dependent 

amplitudes (see section 4.2.6): 

(a) incident photon energy 8 Gev 

(b) incident photon energy i6 Gev. 

Neutron-nucleus elastic scattering: 

Diagram for the regenerative two-stepamplitude. 

Ca1culated and experimental values of neutrqn-nucleus 

total cross section. The effec,t of omi tting. the N* 

contribution is shown for C and Pb. 

solid lines: calculations using the nuc1ear parameters(25) 

listed in Table l 

broken lines: calculations using values for the nuclear 

radii which are at the upper and lower,bound of 

of the experimental uncertainty. 
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( 
Figure 17 (taken from reference 12) 

Dependence of the production cross section n + - -
+A~nnn+A 

for nuc1ei ranging from Be to Pb at 15.1 Gev/c. The 

cross sections refer to three-pion masses in the interva1 

from 1 to 1.2 Gev. The in coherent events have been 

subtracted by fi tting an exponentia1 t' distribution to 

the (incoherent) tai1 of the angu1ar distribution, the 

fraction of incoherent events in the integrated t' distri-

bution varies from 35% in Be to 22% in Pb. 

( 
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